LOC389641 promotes papillary thyroid cancer progression by regulating the EMT pathway

2020 ◽  
Vol 14 (11) ◽  
pp. 969-980
Author(s):  
Cheng-ze Chen ◽  
Jia-Liang Wen ◽  
Bang-Yi Lin ◽  
Chen Zheng ◽  
Rui-da Quan ◽  
...  

Aim: Thyroid cancer (TC) is one of the most common types of endocrine malignancy and poses a significant challenge to human health. The long noncoding RNA 389641 ( LOC389641) has been found to be associated with many types of cancer. However, the function of LOC389641 in papillary TC (PTC) remains unknown. Our aim is to explore LOC389641 expression and its role in TC. Materials & methods: The function of LOC389641 was determined by colony formation, migration and invasion assays in PTC. Western blot assays were performed to determine the biomarker of epithelial–mesenchymal transition. Results: In this study, we show that LOC389641 is involved in PTC, which suggests that it may be a target for TC therapies.

2020 ◽  
Author(s):  
Chunlei Nie ◽  
Jihua Han ◽  
Wen Bi ◽  
Lili Chen ◽  
Jiawei Yu ◽  
...  

Abstract Kinesin family member C1 (KIFC1) acts as a kind of minus end-directed motorized protein and is considered as an oncogene of some cancer types. However, no studies have fully elucidated its biological activity and molecular mechanisms in papillary thyroid cancer (PTC). The study focused on reporting the overexpression of KIFC1 in cell lines and tissues of PTC. Moreover, clinicopathological features analysis showed that KIFC overexpression is significantly correlated with extrathyroidal invasion and lymph node metastasis. Knockdown of KIFC1 significantly reduced cell growth, migration and invasion in PTC cells, and concomitant increased levels of differentiation markers, such as Tg and Nis. Knockdown of KIFC1 markedly increased the expression level of epithelial cell marker (E-cadherin), and decreased the expression levels of epithelial-mesenchymal transition (EMT) related transcriptional factor N-cadherin, Snail and ZEB1. Further study revealed that knockdown of KIFC1 downregulated stemness markers ALDH2 and SOX2, and inhibited the MAPK signaling cascades and downstream signaling, including p-ERK, ERK, p-JNK, JNK, MMP2, and MMP9, which can affect the expression of the EMT associated factors. Taken together, we reported that KIFC1 might promoted the proliferation, migration and invasion of PTC cells and offer a candidate molecular target for therapeutic intervention.


2021 ◽  
Author(s):  
Luyao Wu ◽  
Yu Ding ◽  
Xi Zhuang ◽  
Jingsheng Cai ◽  
Houchao Tong ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) have emerged as crucial regulators in various cancers. However, the functional roles of most lncRNA in papillary thyroid cancer (PTC) are not detailly understood. This study aims to investigate the biological functions and the molecular mechanism of lncRNA FER1L4 in PTC.Methods: The expression of FER1L4 in PTC was determined via operating RT-PCR assays. Meanwhile, the clinical significance of FER1L4 in PTC patients was described. The biological functions of FER1L4 on PTC cells were evaluated by gain and loss of function experiments. Moreover, animal experiments were performed to reveal the effect on tumor growth. Subcellular distribution of FER1L4 was determined by fluorescence in situ hybridization and subcellular localization assays. Luciferase reporter assay and RNA immunoprecipitation assay were applied to define the relationship between FER1L4, miR-612, and CDH4. Results: Upregulated expression of FER1L4 in PTC tissues was correlated with higher lymph node metastasis rate (p=0.020), extrathyroidal extension (p=0.013), and advanced TNM stage (p=0.013). In addition, knockdown of FER1L4 suppressed PTC cell proliferation, migration and invasion, whereas ectopic expression of FER1L4 inversely promoted these processes. Mechanistically, FER1L4 could competitively bind with miR-612 to prevent the degradation of its target gene Cadherin 4 (CDH4). This condition was further confirmed in the rescue assays.Conclusions: This study firstly demonstrates FER1L4 plays an oncogenic role in PTC via FER1L4-miR-612-CDH4 axis and may provide a new therapeutic and diagnostic target for PTC.


2020 ◽  
pp. 1-11
Author(s):  
Daqing Shen ◽  
Jing Xu ◽  
Xiande Cao ◽  
Xianxiang Cao ◽  
Hailin Tan ◽  
...  

BACKGROUND: Long noncoding RNA (lncRNA) are critical regulators of tumor progression. OBJECTIVE: To determine how the lncRNA membrane associated guanylate kinase, WW and PDZ domain-containing 2 (MAG12) antisense RNA 3 (MAGI2-AS3) and the phosphatase and tensin homolog (PTEN) gene function in regulating bladder cancer (Bca) progression. METHODS: Total RNA from 80 and 30 paired resected Bca and para-cancerous tissues from patients with confirmed Bca was sequentially extracted, quantified, purified, and reverse transcribed using RT-PCR. A library was constructed and sequenced. Four Bca cell lines and a normal urothelial cell line were transfected with lentiviral plasmids, and cell migration and invasion were assayed in vitro. An orthotopic mouse model of Bca was created for in vivo studies. RESULTS: MAGI2-AS3 expression was significantly downregulated in Bca, compared with normal tissues, and negatively associated with tumor stage and a poor prognosis. MAGI2-AS3 and its sense RNA MAGI2 showed significant and positive correlation. The expression of MAGI2 and its downstream gene, PTEN, increased in Bca cells overexpressing MAGI2-AS3, and interference by MAGI2 expression reversed the migration and invasion inhibited by MAGI2-AS3 overexpression. CONCLUSION: MAGI2-AS3 overexpression inhibited Bca cell progression by regulating the MAGI2/PTEN/epithelial-mesenchymal transition, offering novel insights into the mechanism of Bca progression.


Author(s):  
Ying Ye ◽  
Yanan Song ◽  
Juhua Zhuang ◽  
Saifei He ◽  
Jing Ni ◽  
...  

Long noncoding RNA CCAL has been reported to promote tumor progression in various human cancers, including hepatocellular carcinoma, osteosarcoma, and colorectal cancer. However, the role of CCAL in papillary thyroid cancer remains largely unknown. In the present study, we found that the expression of CCAL was upregulated in papillary thyroid tumor tissues compared to adjacent normal tissues. Moreover, the expression of CCAL was positively related with papillary thyroid cancer severity and TNM stage and predicated poor prognosis. Besides, we found that knockdown of CCAL significantly inhibited papillary thyroid cancer cell proliferation, migration, and invasion in vitro and reduced tumor growth and metastasis in vivo. We found that knockdown of CCAL dramatically decreased the expression of NOTCH1 and suppressed the activation of the NOTCH1 signaling pathway. Furthermore, overexpression of NOTCH1 rescued the proliferation, migration, and invasion in papillary thyroid cancer cells. Taken together, our data indicated that CCAL promoted papillary thyroid cancer development and progression by activation of the NOTCH1 pathway, which provided a new insight on the design of therapeutic targets.


2021 ◽  
pp. 096032712110061
Author(s):  
D Cao ◽  
L Chu ◽  
Z Xu ◽  
J Gong ◽  
R Deng ◽  
...  

Background: Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. Methods: The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. Results: Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. Conclusion: Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Luyao Wu ◽  
Yu Ding ◽  
Houchao Tong ◽  
Xi Zhuang ◽  
Jingsheng Cai ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) have emerged as crucial regulators in various cancers. However, the functional roles of most lncRNA in papillary thyroid cancer (PTC) are not detailly understood. This study aims to investigate the biological function and molecular mechanism of lncRNA Fer-1 like family member 4 (FER1L4) in PTC. Methods The expression of FER1L4 in PTC was determined via operating quantitative real-time PCR assays. Meanwhile, the clinical significance of FER1L4 in patients with PTC was described. The biological functions of FER1L4 on PTC cells were evaluated by gain and loss of function experiments. Moreover, animal experiments were performed to reveal the effect on tumor growth. Subcellular distribution of FER1L4 was determined by fluorescence in situ hybridization and subcellular localization assays. Luciferase reporter assay and RNA immunoprecipitation assay were applied to define the relationship between FER1L4, miR-612, and Cadherin 4 (CDH4). Results Upregulated expression of FER1L4 in PTC tissues was positively correlated with lymph node metastasis (P = 0.020), extrathyroidal extension (P = 0.013) and advanced TNM stages (P = 0.013). In addition, knockdown of FER1L4 suppressed PTC cell proliferation, migration, and invasion, whereas ectopic expression of FER1L4 inversely promoted these processes. Mechanistically, FER1L4 could competitively bind with miR-612 to prevent the degradation of its target gene CDH4. This condition was further confirmed in the rescue assays. Conclusions This study first demonstrates FER1L4 plays an oncogenic role in PTC via a FER1L4-miR-612-CDH4 axis and may provide new therapeutic and diagnostic targets for PTC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Wang ◽  
Zhiwei He ◽  
Jian Xu ◽  
Peng Chen ◽  
Jianxin Jiang

AbstractAn accumulation of evidence indicates that long noncoding RNAs are involved in the tumorigenesis and progression of pancreatic cancer (PC). In this study, we investigated the functions and molecular mechanism of action of LINC00941 in PC. Quantitative PCR was used to examine the expression of LINC00941 and miR-335-5p in PC tissues and cell lines, and to investigate the correlation between LINC00941 expression and clinicopathological features. Plasmid vectors or lentiviruses were used to manipulate the expression of LINC00941, miR-335-5p, and ROCK1 in PC cell lines. Gain or loss-of-function assays and mechanistic assays were employed to verify the roles of LINC00941, miR-335-5p, and ROCK1 in PC cell growth and metastasis, both in vivo and in vitro. LINC00941 and ROCK1 were found to be highly expressed in PC, while miR-335-5p exhibited low expression. High LINC00941 expression was strongly associated with larger tumor size, lymph node metastasis, and poor prognosis. Functional experiments revealed that LINC00941 silencing significantly suppressed PC cell growth, metastasis and epithelial–mesenchymal transition. LINC00941 functioned as a molecular sponge for miR-335-5p, and a competitive endogenous RNA (ceRNA) for ROCK1, promoting ROCK1 upregulation, and LIMK1/Cofilin-1 pathway activation. Our observations lead us to conclude that LINC00941 functions as an oncogene in PC progression, behaving as a ceRNA for miR-335-5p binding. LINC00941 may therefore have potential utility as a diagnostic and treatment target in this disease.


2021 ◽  
Vol 53 (4) ◽  
pp. 481-491
Author(s):  
Lizhi Lin ◽  
Jialiang Wen ◽  
Bangyi Lin ◽  
Hao Chen ◽  
Adheesh Bhandari ◽  
...  

Abstract In recent decades, the incidence of thyroid cancer (TC) has rapidly increased, leading us to explore the complex underlying mechanisms. We identified the gene Phospholipase C Delta 3 (PLCD3) as a potential oncogene in TC by conducting the whole transcriptome sequencing. Our study is to understand the oncogenic role of PLCD3 in TC. We verified the overexpression of PLCD3 in TC from The Cancer Genome Atlas, Gene Expression Omnibus databases, and a locally validated cohort. Clinical correlation analysis showed that PLCD3 expression was related to histological type, T stage, lymph node metastasis (LNM), and disease stage. The high expression of PLCD3 could be a distinguishing factor for TC and its LNM. The biological function was examined using small interfering RNA-transfected TC cell lines. Silenced PLCD3 could inhibit colony formation, migration, and invasion ability and promote apoptosis of TC cell lines. PLCD3 silencing reversed the epithelial-mesenchymal transition but induced the apoptotic progress. Further exploration revealed that PLCD3 might be associated with critical genes of the Hippo pathway. The expressions of RHOA, YAP1/TAZ, and their downstream targets were decreased significantly when PLCD3 was down-regulated. YAP1 overexpression rescued the tumor-suppressive effect caused by PLCD3 silencing. This study demonstrates that PLCD3 is an oncogene that supports tumorigenesis and progression in TC, and PLCD3 may be a potential target gene for TC treatment.


Sign in / Sign up

Export Citation Format

Share Document