Chlorpromazine-impregnated catheters as a potential strategy to control biofilm-associated urinary tract infections

2019 ◽  
Vol 14 (12) ◽  
pp. 1023-1034 ◽  
Author(s):  
José JC Sidrim ◽  
Bruno R Amando ◽  
Francisco IF Gomes ◽  
Marilia SMG do Amaral ◽  
Paulo CP de Sousa ◽  
...  

Aim: This study proposes the impregnation of Foley catheters with chlorpromazine (CPZ) to control biofilm formation by Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae. Materials & methods: The minimum inhibitory concentrations (MICs) for CPZ and the effect of CPZ on biofilm formation were assessed. Afterward, biofilm formation and the effect of ciprofloxacin and meropenem (at MIC) on mature biofilms grown on CPZ-impregnated catheters were evaluated. Results: CPZ MIC range was 39.06–625 mg/l. CPZ significantly reduced (p < 0.05) biofilm formation in vitro and on impregnated catheters. In addition, CPZ-impregnation potentiated the antibiofilm activity of ciprofloxacin and meropenem. Conclusion: These findings bring perspectives for the use of CPZ as an adjuvant for preventing and treating catheter-associated urinary tract infections.

Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 181
Author(s):  
Soo Tein Ngoi ◽  
Cindy Shuan Ju Teh ◽  
Chun Wie Chong ◽  
Kartini Abdul Jabar ◽  
Shiang Chiet Tan ◽  
...  

The increasing prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae has greatly affected the clinical efficacy of β-lactam antibiotics in the management of urinary tract infections (UTIs). The limited treatment options have resulted in the increased use of carbapenem. However, flomoxef could be a potential carbapenem-sparing strategy for UTIs caused by ESBL-producers. Here, we compared the in vitro susceptibility of UTI-associated ESBL-producers to flomoxef and established β-lactam antibiotics. Fifty Escherichia coli and Klebsiella pneumoniae strains isolated from urine samples were subjected to broth microdilution assay, and the presence of ESBL genes was detected by polymerase chain reactions. High rates of resistance to amoxicillin-clavulanate (76–80%), ticarcillin-clavulanate (58–76%), and piperacillin-tazobactam (48–50%) were observed, indicated by high minimum inhibitory concentration (MIC) values (32 µg/mL to 128 µg/mL) for both species. The ESBL genes blaCTX-M and blaTEM were detected in both E. coli (58% and 54%, respectively) and K. pneumoniae (88% and 74%, respectively), whereas blaSHV was found only in K. pneumoniae (94%). Carbapenems remained as the most effective antibiotics against ESBL-producing E. coli and K. pneumoniae associated with UTIs, followed by flomoxef and cephamycins. In conclusion, flomoxef may be a potential alternative to carbapenem for UTIs caused by ESBL-producers in Malaysia.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S823-S823
Author(s):  
Kendra Foster ◽  
Linnea A Polgreen ◽  
Brett Faine ◽  
Philip M Polgreen

Abstract Background Urinary tract infections (UTIs) are one of the most common bacterial infections. There is a lack of large epidemiologic studies evaluating the etiologies of UTIs in the United States. This study aimed to determine the prevalence of different UTI-causing organisms and their antimicrobial susceptibility profiles among patients being treated in a hospital setting. Methods We used the Premier Healthcare Database. Patients with a primary diagnosis code of cystitis, pyelonephritis, or urinary tract infection and had a urine culture from 2009- 2018 were included in the study. Both inpatients and patients who were only treated in the emergency department (ED) were included. We calculated descriptive statistics for uropathogens and their susceptibilities. Multi-drug-resistant pathogens are defined as pathogens resistant to 3 or more antibiotics. Resistance patterns are also described for specific drug classes, like resistance to fluoroquinolones. We also evaluated antibiotic use in this patient population and how antibiotic use varied during the hospitalization. Results There were 640,285 individuals who met the inclusion criteria. Females make up 82% of the study population and 45% were age 65 or older. The most common uropathogen was Escherichia Coli (64.9%) followed by Klebsiella pneumoniae (8.3%), and Proteus mirabilis (5.7%). 22.2% of patients were infected with a multi-drug-resistant pathogen. We found that E. Coli was multi-drug resistant 23.8% of the time; Klebsiella pneumoniae was multi-drug resistant 7.4%; and Proteus mirabilis was multi-drug resistant 2.8%. The most common antibiotics prescribed were ceftriaxone, levofloxacin, and ciprofloxacin. Among patients that were prescribed ceftriaxone, 31.7% of them switched to a different antibiotic during their hospitalization. Patients that were prescribed levofloxacin and ciprofloxacin switched to a different antibiotic 42.8% and 41.5% of the time, respectively. Conclusion E. Coli showed significant multidrug resistance in this population of UTI patients that were hospitalized or treated within the ED, and antibiotic switching is common. Disclosures All Authors: No reported disclosures


Author(s):  
Rachana Kanaujia ◽  
Amit Kumar ◽  
Malay Bajpai

Background: Urinary tract infections (UTIs) are one of the most common infections. For treatment of UTIs, there are limited antibiotics due to increased resistance among uropathogens. Two older antibiotics; Nitrofurantoin and Fosfomycin have become novel oral therapeutic options against uropathogens. Aim of the study was to identify UTI causing micro-organisms and evaluate in-vitro activity of nitrofurantoin and fosfomycin against most common isolated organism (E. coli).Methods: Results of urine samples culture and susceptibility testing over a period of 1 year were analysed and included in this study.Results: Micro-organisms were isolated from 568 urine samples. Most commonly isolated organism was Escherichia coli (40.50%), followed by Klebsiella spp. (20.07%) and Staphylococcus spp. (17.07%). Susceptibility of E. coli to nitrofurantoin and fosfomycin was 91.74% and 65.65% respectively. Conclusion: Good activity of nitrofurantoin and fosfomycin against E. coli indicates that these two drugs are potential therapeutic alternatives for urinary tract infections.


2020 ◽  
Vol 202 (20) ◽  
Author(s):  
Eric C. DiBiasio ◽  
Hilary J. Ranson ◽  
James R. Johnson ◽  
David C. Rowley ◽  
Paul S. Cohen ◽  
...  

ABSTRACT Uropathogenic Escherichia coli (UPEC) is the leading cause of human urinary tract infections (UTIs), and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs in vivo that are in a quiescent state and thus are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate in vitro with glucose as the carbon source. At low cell density, the bacteria remain viable but enter a quiescent, nonproliferative state. Of the clinical UPEC isolates tested to date, 35% (51/145) enter this quiescent state, including isolates from the recently emerged, multidrug-resistant pandemic lineage ST131 (i.e., strain JJ1886) and isolates from the classic endemic lineage ST73 (i.e., strain CFT073). Moreover, quorum-dependent UPEC quiescence is prevented and reversed by small-molecule proliferants that stimulate colony formation. These proliferation cues include d-amino acid-containing peptidoglycan (PG) tetra- and pentapeptides, as well as high local concentrations of l-lysine and l-methionine. Peptidoglycan fragments originate from the peptidoglycan layer that supports the bacterial cell wall but are released as bacteria grow. These fragments are detected by a variety of organisms, including human cells, other diverse bacteria, and, as we show here for the first time, UPEC. Together, these results show that for UPEC, (i) sensing of PG stem peptide and uptake of l-lysine modulate the quorum-regulated decision to proliferate and (ii) quiescence can be prevented by both intra- and interspecies PG peptide signaling. IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). During pathogenesis, UPEC cells adhere to and infiltrate bladder epithelial cells, where they may form intracellular bacterial communities (IBCs) or enter a nongrowing or slowly growing quiescent state. Here, we show in vitro that UPEC strains at low population density enter a reversible, quiescent state by halting division. Quiescent cells resume proliferation in response to sensing a quorum and detecting external signals, or cues, including peptidoglycan tetra- and pentapeptides.


Author(s):  
Mengistu Abayneh ◽  
Getnet Tesfaw ◽  
Alemseged Abdissa

Background. Klebsiella pneumoniae and Escherichia coli are the major extended-spectrum β-lactamase- (ESBL-) producing organisms increasingly isolated as causes of complicated urinary tract infections and remain an important cause of failure of therapy with cephalosporins and have serious infection control consequence. Objective. To assess the prevalence and antibiotics resistance patterns of ESBL-producing Escherichia coli and Klebsiella pneumoniae from community-onset urinary tract infections in Jimma University Specialized hospital, Southwest Ethiopia, 2016. Methodology. A hospital-based cross-sectional study was conducted, and a total of 342 urine samples were cultured on MacConkey agar for the detection of etiologic agents. Double-disk synergy (DDS) methods were used for detection of ESBL-producing strains. A disc of amoxicillin + clavulanic acid (20/10 µg) was placed in the center of the Mueller–Hinton agar plate, and cefotaxime (30 µg) and ceftazidime (30 µg) were placed at a distance of 20 mm (center to center) from the amoxicillin + clavulanic acid disc. Enhanced inhibition zone of any of the cephalosporin discs on the side facing amoxicillin + clavulanic acid was considered as ESBL producer. Results. In the current study, ESBL-producing phenotypes were detected in 23% (n = 17) of urinary isolates, of which Escherichia coli accounts for 76.5% (n = 13) and K. pneumoniae for 23.5% (n = 4). ESBL-producing phenotypes showed high resistance to cefotaxime (100%), ceftriaxone (100%), and ceftazidime (70.6%), while both ESBL-producing and non-ESBL-producing isolates showed low resistance to amikacin (9.5%), and no resistance was seen with imipenem. In the risk factors analysis, previous antibiotic use more than two cycles in the previous year (odds ratio (OR), 6.238; 95% confidence interval (CI), 1.257–30.957; p = 0.025) and recurrent UTI more than two cycles in the last 6 months or more than three cycles in the last year (OR, 7.356; 95% CI, 1.429–37.867; p = 0.017) were found to be significantly associated with the ESBL-producing groups. Conclusion. Extended-spectrum β-lactamases- (ESBL-)producing strain was detected in urinary tract isolates. The occurrence of multidrug resistance to the third-generation cephalosporins, aminoglycosides, fluoroquinolones, trimethoprim-sulfamethoxazole, and tetracyclines is more common among ESBL producers. Thus, detecting and reporting of ESBL-producing organisms have paramount importance in the clinical decision-making.


Sign in / Sign up

Export Citation Format

Share Document