Architecture of the type II secretion and type IV pilus machineries

2010 ◽  
Vol 5 (8) ◽  
pp. 1203-1218 ◽  
Author(s):  
Melissa Ayers ◽  
P Lynne Howell ◽  
Lori L Burrows
2007 ◽  
Vol 189 (17) ◽  
pp. 6389-6396 ◽  
Author(s):  
Richard F. Collins ◽  
Muhammad Saleem ◽  
Jeremy P. Derrick

ABSTRACT Type IV pili are surface-exposed retractable fibers which play a key role in the pathogenesis of Neisseria meningitidis and other gram-negative pathogens. PilG is an integral inner membrane protein and a component of the type IV pilus biogenesis system. It is related by sequence to the extensive GspF family of secretory proteins, which are involved in type II secretion processes. PilG was overexpressed and purified from Escherichia coli membranes by detergent extraction and metal ion affinity chromatography. Analysis of the purified protein by perfluoro-octanoic acid polyacrylamide gel electrophoresis showed that PilG formed dimers and tetramers. A three-dimensional (3-D) electron microscopy structure of the PilG multimer was determined using single-particle averaging applied to samples visualized by negative staining. Symmetry analysis of the unsymmetrized 3-D volume provided further evidence that the PilG multimer is a tetramer. The reconstruction also revealed an asymmetric bilobed structure approximately 125 Å in length and 80 Å in width. The larger lobe within the structure was identified as the N terminus by location of Ni-nitrilotriacetic acid nanogold particles to the N-terminal polyhistidine tag. We propose that the smaller lobe corresponds to the periplasmic domain of the protein, with the narrower “waist” region being the transmembrane section. This constitutes the first report of a 3-D structure of a member of the GspF family and suggests a physical basis for the role of the protein in linking cytoplasmic and periplasmic protein components of the type II secretion and type IV pilus biogenesis systems.


2003 ◽  
Vol 185 (9) ◽  
pp. 2749-2758 ◽  
Author(s):  
Éric Durand ◽  
Alain Bernadac ◽  
Geneviève Ball ◽  
Andrée Lazdunski ◽  
James N. Sturgis ◽  
...  

ABSTRACT The type II secretion pathway of Pseudomonas aeruginosa is involved in the extracellular release of various toxins and hydrolytic enzymes such as exotoxin A and elastase. This pathway requires the function of a macromolecular complex called the Xcp secreton. The Xcp secreton shares many features with the machinery involved in type IV pilus assembly. More specifically, it involves the function of five pilin-like proteins, the XcpT-X pseudopilins. We show that, upon overexpression, the XcpT pseudopilin can be assembled in a pilus, which we call a type II pseudopilus. Image analysis and filtering of electron micrographs indicated that these appendages are composed of individual fibrils assembled together in a bundle structure. Our observations thus revealed that XcpT has properties similar to those of type IV pilin subunits. Interestingly, the assembly of the type II pseudopilus is not exclusively dependent on the Xcp machinery but can be supported by other similar machineries, such as the Pil (type IV pilus) and Hxc (type II secretion) systems of P. aeruginosa. In addition, heterologous pseudopilins can be assembled by P. aeruginosa into a type II pseudopilus. Finally, we showed that assembly of the type II pseudopilus confers increased bacterial adhesive capabilities. These observations confirmed the ability of pseudopilins to form a pilus structure and raise questions with respect to their function in terms of secretion and adhesion, two crucial biological processes in the course of bacterial infections.


PLoS ONE ◽  
2009 ◽  
Vol 4 (3) ◽  
pp. e4752 ◽  
Author(s):  
Ritwij Kulkarni ◽  
Bijaya K. Dhakal ◽  
E. Susan Slechta ◽  
Zachary Kurtz ◽  
Matthew A. Mulvey ◽  
...  

2012 ◽  
Vol 419 (1-2) ◽  
pp. 110-124 ◽  
Author(s):  
Atsushi Yamagata ◽  
Ekaterina Milgotina ◽  
Karen Scanlon ◽  
Lisa Craig ◽  
John A. Tainer ◽  
...  

2019 ◽  
Vol 209 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Theis Jacobsen ◽  
Benjamin Bardiaux ◽  
Olivera Francetic ◽  
Nadia Izadi-Pruneyre ◽  
Michael Nilges

AbstractType IV pili are versatile and highly flexible fibers formed on the surface of many Gram-negative and Gram-positive bacteria. Virulence and infection rate of several pathogenic bacteria, such as Neisseria meningitidis and Pseudomonas aeruginosa, are strongly dependent on the presence of pili as they facilitate the adhesion of the bacteria to the host cell. Disruption of the interactions between the pili and the host cells by targeting proteins involved in this interaction could, therefore, be a treatment strategy. A type IV pilus is primarily composed of multiple copies of protein subunits called major pilins. Additional proteins, called minor pilins, are present in lower abundance, but are essential for the assembly of the pilus or for its specific functions. One class of minor pilins is required to initiate the formation of pili, and may form a complex similar to that identified in the related type II secretion system. Other, species-specific minor pilins in the type IV pilus system have been shown to promote additional functions such as DNA binding, aggregation and adherence. Here, we will review the structure and the function of the minor pilins from type IV pili.


2007 ◽  
Vol 1105 (1) ◽  
pp. 187-201 ◽  
Author(s):  
A. FORSBERG ◽  
T. GUINA

2007 ◽  
Vol 189 (14) ◽  
pp. 5022-5033 ◽  
Author(s):  
Xiaoyan Han ◽  
Ruth M. Kennan ◽  
Dane Parker ◽  
John K. Davies ◽  
Julian I. Rood

ABSTRACT The objective of this study was to develop an understanding of the molecular mechanisms by which type IV fimbrial biogenesis, natural transformation, and protease secretion are linked in the ovine foot rot pathogen, Dichelobacter nodosus. We have shown that like the D. nodosus fimbrial subunit FimA, the pilin-like protein PilE and the FimN, FimO, and FimP proteins, which are homologs of PilB, PilC, and PilD from Pseudomonas aeruginosa, are essential for fimbrial biogenesis and natural transformation, indicating that transformation requires an intact type IV fimbrial apparatus. The results also showed that extracellular protease secretion in the fimN, fimO, fimP, and pilE mutants was significantly reduced, which represents the first time that PilB, PilC, and PilE homologs have been shown to be required for the secretion of unrelated extracellular proteins in a type IV fimbriate bacterium. Quantitative real-time PCR analysis of the three extracellular protease genes aprV2, aprV5, and bprV showed that the effects on protease secretion were not mediated at the transcriptional level. Bioinformatic analysis did not identify a classical type II secretion system, and the putative fimbrial biogenesis gene pilQ was the only outer membrane secretin gene identified. Based on these results, it is postulated that in D. nodosus, protease secretion occurs by a type II secretion-related process that directly involves components of the type IV fimbrial biogenesis machinery, which represents the only type II secretion system encoded by the small genome of this highly evolved pathogen.


Microbiology ◽  
2006 ◽  
Vol 152 (12) ◽  
pp. 3569-3573 ◽  
Author(s):  
Claressa E. Lucas ◽  
Ellen Brown ◽  
Barry S. Fields

Legionellae colonize biofilms in building water systems, yet little is known about their interaction with the organisms in these microbial communities. The role of Legionella pneumophila type IV pili and the type II secretion pre-pilin peptidase was evaluated in a model biofilm system. L. pneumophila strains 130b (wild-type), BS100 (a type IV pili mutant) and NU243 (a pre-pilin peptidase mutant) were assessed for attachment and retention in an established biofilm. Strains 130b and NU243 colonized the biofilm at a similar level while BS100 attached at a tenfold lower level. Over time, NU243 dropped below the level of detection while BS100 remained in the biofilm throughout the course of the experiment. The wild-type strain decreased but remained at a considerably higher level than either of the mutants. Inclusion of amoebae with BS100 allowed for attachment and retention at a level similar to 130b. NU243, which displays reduced intracellular replication, was able to establish itself and persist in the presence of amoebae. Thus, type IV pili and the pre-pilin peptidase facilitate L. pneumophila colonization of biofilms but are not required in the presence of a host for intracellular replication.


2003 ◽  
Vol 185 (18) ◽  
pp. 5408-5418 ◽  
Author(s):  
Rebecca S. Wiesner ◽  
David R. Hendrixson ◽  
Victor J. DiRita

ABSTRACT The human pathogen Campylobacter jejuni is one of more than 40 naturally competent bacterial species able to import macromolecular DNA from the environment and incorporate it into their genomes. However, in C. jejuni little is known about the genes involved in this process. We used random transposon mutagenesis to identify genes that are required for the transformation of this organism. We isolated mutants with insertions in 11 different genes; most of the mutants are affected in the DNA uptake stage of transformation, whereas two mutants are affected in steps subsequent to DNA uptake, such as recombination into the chromosome or in DNA transport across the inner membrane. Several of these genes encode proteins homologous to those involved in type II secretion systems, biogenesis of type IV pili, and competence for natural transformation in gram-positive and gram-negative species. Other genes identified in our screen encode proteins unique to C. jejuni or are homologous to proteins that have not been shown to play a role in the transformation in other bacteria.


Sign in / Sign up

Export Citation Format

Share Document