scholarly journals Elucidating the role of T cells in protection against and pathogenesis of dengue virus infections

2014 ◽  
Vol 9 (3) ◽  
pp. 411-425 ◽  
Author(s):  
Anuja Mathew ◽  
Elizabeth Townsley ◽  
Francis A Ennis
2008 ◽  
Vol 181 (9) ◽  
pp. 5865-5874 ◽  
Author(s):  
Wanwisa Dejnirattisai ◽  
Thaneeya Duangchinda ◽  
Chen-Lung Steve Lin ◽  
Sirijitt Vasanawathana ◽  
Meleri Jones ◽  
...  

2015 ◽  
Vol 89 (12) ◽  
pp. 6494-6505 ◽  
Author(s):  
Raphaël M. Zellweger ◽  
William W. Tang ◽  
William E. Eddy ◽  
Kevin King ◽  
Marisa C. Sanchez ◽  
...  

ABSTRACTDengue virus (DENV) is a major public health threat worldwide. Infection with one of the four serotypes of DENV results in a transient period of protection against reinfection with all serotypes (cross-protection), followed by lifelong immunity to the infecting serotype. While a protective role for neutralizing antibody responses is well established, the contribution of T cells to reinfection is less clear, especially during heterotypic reinfection. This study investigates the role of T cells during homotypic and heterotypic DENV reinfection. Mice were sequentially infected with homotypic or heterotypic DENV serotypes, and T cell subsets were depleted before the second infection to assess the role of DENV-primed T cells during reinfection. Mice primed nonlethally with DENV were protected against reinfection with either a homotypic or heterotypic serotype 2 weeks later. Homotypic priming induced a robust neutralizing antibody response, whereas heterotypic priming elicited binding, but nonneutralizing antibodies. CD8+T cells were required for protection against heterotypic, but not homotypic, reinfection. These results suggest that T cells can contribute crucially to protection against heterotypic reinfection in situations where humoral responses alone may not be protective. Our findings have important implications for vaccine design, as they suggest that inducing both humoral and cellular responses during vaccination may maximize protective efficacy across all DENV serotypes.IMPORTANCEDengue virus is present in more than 120 countries in tropical and subtropical regions. Infection with dengue virus can be asymptomatic, but it can also progress into the potentially lethal severe dengue disease. There are four closely related dengue virus serotypes. Infection with one serotype results in a transient period of resistance against all serotypes (cross-protection), followed by lifelong resistance to the infecting serotype, but not the other ones. The duration and mechanisms of the transient cross-protection period remain elusive. This study investigates the contribution of cellular immunity to cross-protection using mouse models of DENV infection. Our results demonstrate that cellular immunity is crucial to mediate cross-protection against reinfection with a different serotype, but not for protection against reinfection with the same serotype. A better understanding of the mediators responsible for the cross-protection period is important for vaccine design, as an ideal vaccine against dengue virus should efficiently protect against all serotypes.


2019 ◽  
Author(s):  
Erick X. Pérez-Guzmán ◽  
Petraleigh Pantoja ◽  
Crisanta Serrano-Collazo ◽  
Mariah A. Hassert ◽  
Alexandra Ortiz-Rosa ◽  
...  

AbstractThe role of Zika virus (ZIKV) immunity on subsequent dengue virus (DENV) infections is relevant to anticipate the dynamics of forthcoming DENV epidemics in areas with previous ZIKV exposure. We study the effect of ZIKV infection with various strains on subsequent DENV immune response after 10 and 2 months of ZIKV infection in rhesus macaques. Our results show that a subsequent DENV infection in animals with early- and middle-convalescent periods to ZIKV do not promote an increase in DENV viremia nor pro-inflammatory status. Previous ZIKV exposure increases the magnitude of the antibody and T cell responses against DENV, and different time intervals between infections alter the magnitude and durability of such responses—more after longer ZIKV pre-exposure. Collectively, we find no evidence of a detrimental effect of ZIKV immunity in a subsequent DENV infection. This supports the implementation of ZIKV vaccines that could also boost immunity against future DENV epidemics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Georg von Massow ◽  
Steve Oh ◽  
Alan Lam ◽  
Kenth Gustafsson

The global outbreak of the SARS-Cov-2 virus in 2020 has killed millions of people worldwide and forced large parts of the world into lockdowns. While multiple vaccine programs are starting to immunize the global population, there is no direct cure for COVID-19, the disease caused by the SARS-Cov-2 infection. A common symptom in patients is a decrease in T cells, called lymphopenia. It is as of yet unclear what the exact role of T cells are in the immune response to COVID-19. The research so far has mainly focused on the involvement of classical αβ T cells. However, another subset of T cells called γδ T cells could have an important role to play. As part of the innate immune system, γδ T cells respond to inflammation and stressed or infected cells. The γδ T cell subset appears to be particularly affected by lymphopenia in COVID-19 patients and commonly express activation and exhaustion markers. Particularly in children, this subset of T cells seems to be most affected. This is interesting and relevant because γδ T cells are more prominent and active in early life. Their specific involvement in this group of patients could indicate a significant role for γδ T cells in this disease. Furthermore, they seem to be involved in other viral infections and were able to kill SARS infected cells in vitro. γδ T cells can take up, process and present antigens from microbes and human cells. As e.g. tumour-associated antigens are presented by MHC on γδ T cells to classical T-cells, we argue here that it stands to reason that also viral antigens, such as SARS-Cov-2-derived peptides, can be presented in the same way. γδ T cells are already used for medical purposes in oncology and have potential in cancer therapy. As γδ T cells are not necessarily able to distinguish between a transformed and a virally infected cell it could therefore be of great interest to investigate further the relationship between COVID-19 and γδ T cells.


2011 ◽  
Vol 188 (1) ◽  
pp. 404-416 ◽  
Author(s):  
Simona Zompi ◽  
Brian H. Santich ◽  
P. Robert Beatty ◽  
Eva Harris

Sign in / Sign up

Export Citation Format

Share Document