The characteristic of tumor immune microenvironment in pulmonary carcinosarcoma

Immunotherapy ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 323-331
Author(s):  
Yanhong Cen ◽  
Zhao Huang ◽  
Jiangbo Ren ◽  
Junhong Zhang ◽  
Yan Gong ◽  
...  

Pulmonary carcinosarcoma (PCS) is a rare but aggressive neoplasm, due to late diagnosis and early metastasis. Surgery combined with radiotherapy is a standard treatment. However, PCS features an easy relapse after surgery resection and resistance to chemotherapy and radiotherapy. Tumor immune microenvironment reflects tumor immunophenotyping and affects immunotherapy efficiency. This review summarized current studies on the characteristic of tumor immune microenvironment in PCS and discussed the potential of immunotherapy combined with other regimes strategy as a candidate for treatments in PCS.

2021 ◽  
Vol 22 (18) ◽  
pp. 9914
Author(s):  
Giovanni Brandi ◽  
Silvia Turroni ◽  
Florencia McAllister ◽  
Giorgio Frega

Recent pieces of evidence have emerged on the relevance of microorganisms in modulating responses to anticancer treatments and reshaping the tumor-immune microenvironment. On the one hand, many studies have addressed the role of the gut microbiota, providing interesting correlative findings with respect to etiopathogenesis and treatment responses. On the other hand, intra-tumoral bacteria are being recognized as intrinsic and essential components of the cancer microenvironment, able to promote a plethora of tumor-related aspects from cancer growth to resistance to chemotherapy. These elements will be probably more and more valuable in the coming years in early diagnosis and risk stratification. Furthermore, microbial-targeted intervention strategies may be used as adjuvants to current therapies to improve therapeutic responses and overall survival. This review focuses on new insights and therapeutic approaches that are dawning against pancreatic cancer: a neoplasm that arises in a central metabolic “hub” interfaced between the gut and the host.


2020 ◽  
Author(s):  
zhihong sun ◽  
Guanjun Deng ◽  
Xinghua Peng ◽  
Xiuli Xu ◽  
Lanlan Liu ◽  
...  

Recently, photothermal-immuno synergistic therapy under mild temperature (~ 45 °C) has got broad interest in cancer treatment. Inhibition the intratumorally HSPs production is the key to accomplish highly efficient and mild photothermal therapy. In this work, we developed biomimetic nanoterminators with mature DCs functions by coating the mature dendritic cell membrane on photothermal nanoagents. As-prepared nanoterminators could automatically locate on T cell in the complex tumor-immune microenvironment and promote the T cells proliferation, activation and cytokine secretion, which could not only inhibit the expression of heat shock proteins to cooperate on highly efficient mild photothermal therapy (~42°C), but also promote tumor apoptosis during the treatment. More importantly, this nanoterminator could serve as vaccine to trigger anti-tumor immune response of the whole body, which would be promising to long-life tumor inhibition and termination.


2020 ◽  
Author(s):  
Ling-Ling Zhu ◽  
Ze-Long Liu ◽  
Jing-Hua Liu ◽  
Zi-han Qu ◽  
Hong-e Zhang ◽  
...  

Author(s):  
Zuzana Saidak ◽  
Simon Soudet ◽  
Marine Lottin ◽  
Valéry Salle ◽  
Marie-Antoinette Sevestre ◽  
...  

Author(s):  
Chao Wang ◽  
Min Shi ◽  
Lei Zhang ◽  
Jun Ji ◽  
Ruyan Xie ◽  
...  

Abstract Objective To investigate the molecular characteristics in tumor immune microenvironment that affect long-term survival of patients with pancreatic adenocarcinoma (PAAD). Methods The tumor related genetic features of a female PAAD patient (over 13-year survival) who suffered from multiple recurrences and metastases, and six operations over one decade were investigated deeply. Genomic features and immune microenvironment signatures of her primary lesion as well as six metastatic tumors at different time-points were characterized. Results High-frequency clonal neoantigenic mutations identified in these specimens revealed the significant associations between clonal neoantigens with her prognosis after each surgery. Meanwhile, the TCGA and ICGC databases were employed to analyse the function of KRAS G12V in pancreatic cancer. Conclusions The genomic analysis of clonal neoantigens combined with tumor immune microenvironment could promote the understandings of personalized prognostic evaluation and the stratification of resected PAAD individuals with better outcome.


2020 ◽  
Vol 25 (4) ◽  
pp. 417-432
Author(s):  
Hidetoshi Mori ◽  
Jennifer Bolen ◽  
Louis Schuetter ◽  
Pierre Massion ◽  
Clifford C. Hoyt ◽  
...  

AbstractMultiplex immunofluorescence (mIF) allows simultaneous antibody-based detection of multiple markers with a nuclear counterstain on a single tissue section. Recent studies have demonstrated that mIF is becoming an important tool for immune profiling the tumor microenvironment, further advancing our understanding of the interplay between cancer and the immune system, and identifying predictive biomarkers of response to immunotherapy. Expediting mIF discoveries is leading to improved diagnostic panels, whereas it is important that mIF protocols be standardized to facilitate their transition into clinical use. Manual processing of sections for mIF is time consuming and a potential source of variability across numerous samples. To increase reproducibility and throughput we demonstrate the use of an automated slide stainer for mIF incorporating tyramide signal amplification (TSA). We describe two panels aimed at characterizing the tumor immune microenvironment. Panel 1 included CD3, CD20, CD117, FOXP3, Ki67, pancytokeratins (CK), and DAPI, and Panel 2 included CD3, CD8, CD68, PD-1, PD-L1, CK, and DAPI. Primary antibodies were first tested by standard immunohistochemistry and single-plex IF, then multiplex panels were developed and images were obtained using a Vectra 3.0 multispectral imaging system. Various methods for image analysis (identifying cell types, determining cell densities, characterizing cell-cell associations) are outlined. These mIF protocols will be invaluable tools for immune profiling the tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document