Adenosine triphosphate, polymyxin B and B16 cell-derived immunization induce anticancer response

Immunotherapy ◽  
2021 ◽  
Author(s):  
Carlos Barrera-Avalos ◽  
Javier Mena ◽  
Ximena López ◽  
Claudio Cappelli ◽  
Tanya Neira ◽  
...  

Aim: Whole dead tumor cells can be used as antigen source and the induction of protective immune response could be enhanced by damage-associated molecular patterns. Materials & methods: We generated whole dead tumor cells called B16-immunogenic cell bodies (ICBs) from B16 melanoma cells by nutrient starvation and evaluated the in vivo antitumor effect of B16-ICBs plus ATP and polymyxin B (PMB). Results: The subcutaneous immunization with B16-ICBs + PMB + ATP a 50% of tumor-free animals and induced a significant delay in tumor growth in a prophylactic approach. These results correlated with maturation of bone marrow-derived dendritic cells and activation of T CD8+ lymphocytes in vitro. Conclusion: Altogether, ICB + ATP + PMB is efficient in inducing the antitumor efficacy of the whole dead tumor cells vaccine.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Dawn Z Eichenfield ◽  
Ty Dale Troutman ◽  
Verena M Link ◽  
Michael T Lam ◽  
Han Cho ◽  
...  

Although macrophages can be polarized to distinct phenotypes in vitro with individual ligands, in vivo they encounter multiple signals that control their varied functions in homeostasis, immunity, and disease. Here, we identify roles of Rev-erb nuclear receptors in regulating responses of mouse macrophages to complex tissue damage signals and wound repair. Rather than reinforcing a specific program of macrophage polarization, Rev-erbs repress subsets of genes that are activated by TLR ligands, IL4, TGFβ, and damage-associated molecular patterns (DAMPS). Unexpectedly, a complex damage signal promotes co-localization of NF-κB, Smad3, and Nrf2 at Rev-erb-sensitive enhancers and drives expression of genes characteristic of multiple polarization states in the same cells. Rev-erb-sensitive enhancers thereby integrate multiple damage-activated signaling pathways to promote a wound repair phenotype.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0115828 ◽  
Author(s):  
Bo Chen ◽  
Allison L. Miller ◽  
Marlon Rebelatto ◽  
Yambasu Brewah ◽  
Daniel C. Rowe ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Puja Sharma ◽  
Poonam Sonawane ◽  
Denise Herpai ◽  
Ralph D’Agostino ◽  
John Rossmeisl ◽  
...  

Abstract Background Treatment for glioblastoma (GBM) remains an unmet need in medicine. Novel therapies that address GBM complexity and heterogeneity in particular are warranted. To this end, we target 4 tumor-associated receptors at a time that span virtually all of the GBM microenvironment including bulk tumor cells, infiltrating tumor cells, neovasculature, and tumor-infiltrating cells with one pharmaceutical agent delivering a cytotoxic load. Methods We engineered multivalent ligand-based vector proteins termed QUAD with an ability to bind to 4 of the following GBM-associated receptors: IL-13RA2, EphA2, EphA3, and EphB2. We conjugated QUAD with a modified bacterial toxin PE38QQR and tested it in vitro and in vivo. Results The QUAD variants preserved functional characteristics of the respective ligands for the 4 receptors. The QUAD 3.0 variant conjugate was highly cytotoxic to GBM cells, but it was nontoxic in mice, and the conjugate exhibited strong antitumor effect in a dog with spontaneous GBM. Conclusion The QUAD addresses, to a large extent, the issues of intra- and intertumoral heterogeneity and, at the same time, it targets several pathophysiologically important tumor compartments in GBM through multiple receptors overexpressed in tumors allowing for what we call “molecular resection.” QUAD-based targeted agents warrant further pre- and clinical development.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 34-34
Author(s):  
Ying Du ◽  
Baoan Chen

Objective:Tumor targeting proteins were modified on the surface of platelets and chemotherapeutic drugs were encapsulated in platelets. Based on the fact that platelets can enter the tumor environment and interact with tumor cells, the functionalized platelets carrier has dual targeting effect to kill tumor cells.Methods:Aspirin was used to inhibit platelets aggregation and deformation in vitro to obtain complete platelets. Exogenous Tf (transferrin) was modified on platelets surface to target specific tumor cells (human multiple myeloma cell line RPMI8226). DOX (doxorubicin) was loaded into platelets. To verify the inhibitory effect of functional platelets vector on cell. To observe the distribution of targeted functional platelets vector and treatment effect on implant tumor in mice.Results:Aspirin can inhibit platelets aggregation and deformation during the preparation process effectively. Stable platelets can be modified by Tf and encapsulate DOX effectively. At the same time, the functional platelet vector can specifically aggregate in the implant tumor site in vivo and achieve effective anti-tumor effect.Conclusion:Platelets aggregation and deformation can be inhibited by aspirin effectively, which makes it a stable natural drug carrier. The antitumor effect can be achieved by the functional platelets. Keywords:platelets, encapsulation, doxorubicin, tumor Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhaohuan Li ◽  
Chunxi Liu ◽  
Chenglei Li ◽  
Fangqing Wang ◽  
Jianhao Liu ◽  
...  

Abstract Background Cancer-associated fibroblasts (CAFs), as an important component of stroma, not only supply the “soils” to promote tumor invasion and metastasis, but also form a physical barrier to hinder the penetration of therapeutic agents. Based on this, the combinational strategy that action on both tumor cells and CAFs simultaneously would be a promising approach for improving the antitumor effect. Results In this study, the novel multifunctional liposomes (IRI-RGD/R9-sLip) were designed, which integrated the advantages including IRI and scFv co-loading, different targets, RGD mediated active targeting, R9 promoting cell efficient permeation and lysosomal escape. As expected, IRI-RGD/R9-sLip showed enhanced cytotoxicity in different cell models, effectively increased the accumulation in tumor sites, as well as exhibited deep permeation ability both in vitro and in vivo. Notably, IRI-RGD/R9-sLip not only exhibited superior in vivo anti-tumor effect in both CAFs-free and CAFs-abundant bearing mice models, but also presented excellent anti-metastasis efficiency in lung metastasis model. Conclusion In a word, the novel combinational strategy by coaction on both “seeds” and “soils” of the tumor provides a new approach for cancer therapy, and the prepared liposomes could efficiently improve the antitumor effect with promising clinical application prospects. Graphical Abstract


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


Author(s):  
А.А. Раецкая ◽  
С.В. Калиш ◽  
С.В. Лямина ◽  
Е.В. Малышева ◽  
О.П. Буданова ◽  
...  

Цель исследования. Доказательство гипотезы, что репрограммированные in vitro на М3 фенотип макрофаги при введении в организм будут существенно ограничивать развитие солидной карциномы in vivo . Методика. Рост солидной опухоли инициировали у мышей in vivo путем подкожной инъекции клеток карциномы Эрлиха (КЭ). Инъекцию макрофагов с нативным М0 фенотипом и с репрограммированным M3 фенотипом проводили в область формирования солидной КЭ. Репрограммирование проводили с помощью низких доз сыворотки, блокаторов факторов транскрипции STAT3/6 и SMAD3 и липополисахарида. Использовали две схемы введения макрофагов: раннее и позднее. При раннем введении макрофаги вводили на 1-е, 5-е, 10-е и 15-е сут. после инъекции клеток КЭ путем обкалывания макрофагами с четырех сторон область развития опухоли. При позднем введении, макрофаги вводили на 10-е, 15-е, 20-е и 25-е сут. Через 15 и 30 сут. после введения клеток КЭ солидную опухоль иссекали и измеряли ее объем. Эффект введения макрофагов оценивали качественно по визуальной и пальпаторной характеристикам солидной опухоли и количественно по изменению ее объема по сравнению с группой без введения макрофагов (контроль). Результаты. Установлено, что M3 макрофаги при раннем введении от начала развития опухоли оказывают выраженный антиопухолевый эффект in vivo , который был существенно более выражен, чем при позднем введении макрофагов. Заключение. Установлено, что введение репрограммированных макрофагов M3 ограничивает развитие солидной карциномы в экспериментах in vivo . Противоопухолевый эффект более выражен при раннем введении М3 макрофагов. Обнаруженные в работе факты делают перспективным разработку клинической версии биотехнологии ограничения роста опухоли, путем предварительного программирования антиопухолевого врожденного иммунного ответа «в пробирке». Aim. To verify a hypothesis that macrophages reprogrammed in vitro to the M3 phenotype and injected into the body substantially restrict the development of solid carcinoma in vivo . Methods. Growth of a solid tumor was initiated in mice in vivo with a subcutaneous injection of Ehrlich carcinoma (EC) cells. Macrophages with a native M0 phenotype or reprogrammed towards the M3 phenotype were injected into the region of developing solid EC. Reprogramming was performed using low doses of serum, STAT3/6 and SMAD3 transcription factor blockers, and lipopolysaccharide. Two schemes of macrophage administration were used: early and late. With the early administration, macrophages were injected on days 1, 5, 10, and 15 following the injection of EC cells at four sides of the tumor development area. With the late administration, macrophages were injected on days 10, 15, 20, and 25. At 15 and 30 days after the EC cell injection, the solid tumor was excised and its volume was measured. The effect of macrophage administration was assessed both qualitatively by visual and palpation characteristics of solid tumor and quantitatively by changes in the tumor volume compared with the group without the macrophage treatment. Results. M3 macrophages administered early after the onset of tumor development exerted a pronounced antitumor effect in vivo , which was significantly greater than the antitumor effect of the late administration of M3 macrophages. Conclusion. The observed significant inhibition of in vivo growth of solid carcinoma by M3 macrophages makes promising the development of a clinical version of the biotechnology for restriction of tumor growth by in vitro pre-programming of the antitumor, innate immune response.


Sign in / Sign up

Export Citation Format

Share Document