Polymorphisms of genes related to phase II metabolism and resistance to clopidogrel

2021 ◽  
Author(s):  
Abdullah Alkattan ◽  
Ahmed Alkhalifah ◽  
Eman Alsalameen ◽  
Fatimah Alghanim ◽  
Nashwa Radwan

Clopidogrel is an antiplatelet drug commonly used to prevent coagulation. This review aimed to investigate the effect of polymorphisms of G6PD, GCLC, GCLM, GSS, GST, GSR, HK and GLRX genes on clopidogrel during phase II metabolism through exploring previous studies. The results revealed that low glutathione plasma levels caused by several alleles related to these genes could affect the bioactivation process of the clopidogrel prodrug, making it unable to inhibit platelet aggregation perfectly and thus leading to severe consequences in patients with a high risk of blood coagulation. However, the study recommends platelet reactivity tests to predict clopidogrel efficacy rather than studying gene mutations, as most of these mutations are rare and other nongenetic factors could affect the drug’s efficacy.

1992 ◽  
Vol 67 (02) ◽  
pp. 258-263 ◽  
Author(s):  
Raffaele De Caterina ◽  
Rosa Sicari ◽  
An Yan ◽  
Walter Bernini ◽  
Daniela Giannessi ◽  
...  

SummaryIndobufen is an antiplatelet drug able to inhibit thromboxane production and cyclooxygenase-dependent platelet aggregation by a reversible inhibition of cyclooxygenase. Indobufen exists in two enantiomeric forms, of which only d-indobufen is active in vitro in inhibiting cyclooxygenase. In order to verify that also inhibition of platelet function is totally accounted for by d-indobufen, ten patients with proven coronary artery disease (8 male, 2 female, age, mean ± S.D., 58.7 ± 7.5 years) were given, in random sequence, both 100 mg d-indobufen and 200 mg dl-indobufen as single administrations in a double-blind crossover design study with a washout period between treatments of 72 h. In all patients thromboxane (TX) B2 generation after spontaneous clotting (at 0, 1, 2, 4, 6, 8, 12, 24 h), drug plasma levels (at the same times), platelet aggregation in response to ADP, adrenaline, arachidonic acid, collagen, PAF, and bleeding time (at 0, 2, 12 h) were evaluated after each treatment. Both treatments determined peak inhibition of TXB2 production at 2 h from administration, with no statistical difference between the two treatments (97 ±3% for both treatments). At 12 h inhibition was 87 ± 6% for d-indobufen and 88 ± 6% for dl-indobufen (p = NS). Inhibition of TXB2 production correlated significantly with plasma levels of the drugs. Maximum inhibitory effect on aggregation was seen in response to collagen 1.5 pg/ml (63 ± 44% for d-indobufen and 81 ± 22% for dl-indobufen) and arachidonic acid 0.5-2 mM (78 ± 34% for d-indobufen and 88 ± 24% for dl-indobufen) at 2 h after each administration. An effect of both treatments on platelet aggregation after 12 h was present only for adrenaline 2 μM (55 ± 41% for d-indobufen and 37 ± 54% for dl-indobufen), collagen 1.5 pg/ml (69 ± 30% for d-indobufen and 51 ± 61% for dl-indobufen), arachidonic acid 0.5-2 mM (56 ± 48% for d-indobufen and 35 ± 49% for dl-indobufen). The extent of inhibition of TX production and the extent of residual platelet aggregation were never significantly different between treatments. Bleeding time prolongation was similar in the two treatment groups without showing a pronounced and long lasting effect (from 7.0 ± 2.0 min to 10.0 ± 3.0 min at 2 h and 8.0 ± 2.0 min at 12 h for d-indobufen; from 6.0 ±1.0 min to 8.5 ± 2.0 min at 2 h and 8.0 ± 1.0 min at 12 h for dl-indobufen). These results demonstrate that the biological activity of dl-indobufen as an antiplatelet agent in vivo is totally accounted for by d-indobufen.


1985 ◽  
Vol 54 (04) ◽  
pp. 808-812 ◽  
Author(s):  
Ulf Berglund ◽  
Henning von Schenck ◽  
Lars Wallentin

SummaryThe effects of ticlopidine (T) (500 mg daily) on platelet function were investigated in a double-blind placebo-controlled study in 38 middle-aged men with stable incapacitating angina pectoris. The in vitro platelet reactivity to aggregating agents, the platelet sensitivity to prostacyclin and the plasma levels of platelet specific proteins and fibrinogen were determined before and after 4 and 8 weeks of treatment. T exerted a potent inhibitory effect on ADP- and collagen-induced platelet aggregation. The effect of T was proportional to the pretreatment reactivity to ADP and collagen. The inhibitory effect of T on the epinephrine response was less pronounced. The plasma levels of beta-thromboglobulin, platelet factor 4 and fibrinogen were not influenced by T. The platelet inhibition of prostacyclin was potentiated by T, and it was demonstrated that T and prostacyclin had synergistic inhibitory effects on platelet aggregation.


2021 ◽  
Author(s):  
Xiaoye Li ◽  
Xiaochun Zhang ◽  
Qinchun Jin ◽  
Yanli Li ◽  
Junbo Ge ◽  
...  

Abstract Background This study was designed to evaluate the platelet reactivity of different antithrombotic regimens under the condition of occluder implantation. Methods A single, prospective cohort study was conducted among patients who received anticoagulation with either dabigatran (N = 33) or rivaroxaban (N = 72) between January 2018 and December 2019. We applied thromboelastogram (TEG) to evaluate platelet aggregation induced with thrombin receptor activating peptide (TRAP) after anticoagulation for 3 months. Plasma coagulation markers mediate platelet activation including TAT, P-selectin, vWF and CD40L were tested by the method of ELISA kit on the day of LAAC and at 3 months after operation procedure. Repeated transesophageal echocardiographic were scheduled to evaluate device related thrombosis (DRT) formation on occluders at 3-month after discharge. Results There was 3(4.2%) in rivaroxaban and 4(12.1%) in dabigatran group experiencing DRT events (OR = 0.315, 95%CI:0.066–1.489, P = 0.129) during follow-ups. The TRAP induced platelet aggregation was higher for patients medication with dabigatran as compared to rivaroxaban group (62.9% vs. 59.7%, P = 0.028*). The plasma levels of TAT, P-selectin, vWF expression was significant higher after 3 months intake of dabigatran compared with that on the day LAAC operation, meanwhile, no significant difference was found in the changes of CD40L plasma levels. After receiving 3 months anticoagulation with rivaroxaban, the expressions of plasma platelet activation of TAT, P-selectin, vWF and CD40L showed no significant changes. We observed significant higher expressions of plasma platelet activation markers for DTR patients in terms of the P-selectin and vWF compared with non-DRT patients. Multivariate regression shwed that anticoagualtion regimen (P = 0.022; OR = 4.366, 95%CI: 0.434–10.839) was an independent predictor for DRT in patients after LAAC operation, while non of the plasma platelet activation included was associated with DRT. Conclusions By avoiding peri-procedure DRT occurrence, it is possible that dabigatran usage might even be reduced, as they had been shown to increase expressions of platelet reactivity.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1099-1099 ◽  
Author(s):  
Miho Ushida ◽  
Yumiko Matsubara ◽  
Shinichi Takahashi ◽  
Hiroaki Ishihara ◽  
Toshiro Shibano ◽  
...  

Abstract [Background] Aspirin (ASA) is widely used as an antiplatelet drug, and a large number of clinical trials with ASA demonstrated significant efficacies for prevention and treatment of athrothrombosis. Recently, accumulating evidences indicated that there are inter-individual variations in the platelet response to ASA. The subpopulation, called ASA resistance, has the inability of response to ASA on ex vivo or in vitro platelet function tests and the poor clinical outcomes, although the mechanism underlying the variability is largely unknown. To date, genetic factors were showed to have an impact on platelet reactivity to ASA, and the inter-individual variations in platelet response to ASA was also reported to be associated with platelet sensitivity to collagen. In this study, the association between collagen-induced platelet aggregation (CIPA) and genetic polymorphisms of collagen receptors, glycoprotein (GP) Ia and GPVI, was analyzed using platelets treated by ASA (ASA +/−). We also investigated the effect of these polymorphisms on platelet thromboxane (TXB2) levels, closely related to the final stages of the arachidonate pathway inhibited by ASA. [Methods] We recruited genetically unrelated Japanese males (n=172) at their regular checkups. The mean age was 46.7±5.1 years. The subjects had no apparent hematologic or vascular disease and were not taking any medications that affect platelet function. Written informed consent was obtained from all study subjects. Platelet-rich plasma (PRP) sample was incubated with ASA [final concentration (fc) 10μM] or vehicle for 30 min at 24 degree Centigrade, and CIPA (fc 2μg/ml) test was performed on each PRP sample. Subsequently, platelet TXB2 levels were measured in the supernatant after centrifugation of each sample of CIPA test. Genotypes of the 807TC, Glu534Lys, Asn927Ser polymorphisms of GPIa and the Ser219Pro, Lys237Glu, Thr249Ala, Gln317Leu, His322Asn polymorphisms of GPVI were determined using the single-nucleotide primer extension-based method. [Results] To examine the sensitivity of platelets to ASA in vitro, we analyzed CIPA and platelet TXB2 levels in ASA(+/−). The maximum platelet aggregation and TXB2 levels in ASA(+) were significantly lower than those in ASA(−) (paired t-test, p<0.0001 and p<0.0001, respectively). Next, we investigated the association between the collagen receptor polymorphisms and the maximum platelet aggregation in ASA (+/−). For ASA(−), all genotypes of GPIa and GPVI were not associated with the maximum platelet aggregation. For ASA(+), subjects with 807TT/TC of GPIa had higher aggregation compared to those with 807CC(P=0.0135) whereas no association was observed between other polymorphisms and the maximum platelet aggregation. Moreover, repeated measures ANOVA showed that the difference in this inhibitory effect of ASA was significant between the 807TT/TC and 807CC genotypes (p=0.0253); the 807CC genotype has higher inhibitory effect of ASA. There was no association between platelet TXB2 levels and the GPIa and GPVI polymorphisms both in ASA(+) and ASA(−). [Conclusion] The 807CC genotype of GPIa polymorphism is associated with higher sensitivity to ASA in CIPA.


1979 ◽  
Author(s):  
R.W. Colman

Arterial thrombosis is believed to involve the initial formation of a platelet aggregate. This diagnosis of a putative prethrombotic state should logically involve evaluation of the function of platelets in persons prone to clinical arterial thrombotic disorders. Examples of assays used to measure in vivo platelet behavior are platelet survival measurement, detection of circulating platelet aggregates, and measurement of platelet specific proteins released into plasma. Studies reflecting platelet reactivity in vitro include quantification of the threshold for platelet aggregation and release by physiologic agonists, measurement of spontaneous platelet aggregation, evaluation of platelet coagulant activities, and determination of platelet size. Each of these tests have been applied in many of the following clinical conditions:transient cerebral, is chemic attacks, stroke, anginapectoris, coronary insufficiency, myocardial infarction, homocy-stinuria, hyperlipoproteinemia, paroxysmal noctural hemoglobinuria, prosthetic heart valves, arteriovenous shunts and renal dialysis. Abnormalities in one or more of these tests have been recorded but whether these changes are a cause or effect of the thrombotic conditions has not been established. Nevertheless, discovery of subpopulations with changes in platelet reactivity nay facilitate the identification of individuals who may benefit from antiplatelet drug prophylaxis or therapy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3821-3821 ◽  
Author(s):  
Alfonso Quintás-Cardama ◽  
Hagop M. Kantarjian ◽  
Farhad Ravandi ◽  
Cielo Foudray ◽  
Naveen Pemmaraju ◽  
...  

Abstract Abstract 3821 Background Pracinostat (SB939) is a dialkyl benzimidazole competitive inhibitor of histone deacetylase (HDACi) that has >1000-fold selectivity for HDAC Class 1 and 2 versus Class 3. Antitumor activity has been demonstrated in xenograft models of AML (MV4–11). We conducted a phase I study with pracinostat in patients with advanced myelodysplastic syndrome (MDS; n=11), acute myeloid leukemia (AML; n=12), and lymphoma (n=1). Pracinostat demonstrated excellent PK properties and target inhibition and was generally well tolerated. The MTD was not reached. Activity was documented in 9 patients (1 CR, 1 PR, 7 SD), which encouraged further exploration of pracinostat-based combinations. The recommended phase II dose was 100 mg daily. The combination of 5-azacitidine and HDACi is known to be safe and active in MDS and AML. Methods Ñ This is a pilot phase II study conducted as an extension study in the context of a phase I trial of pracinostat in hematological malignancies to determine the efficacy and safety of the combination of pracinostat (60 mg orally every other day 3 times a week for 3 consecutive weeks) and 5-azacitidine (75 mg/m2 IV daily × 5 every 3 to 6 weeks) given in 4-week cycles to patients with intermediate-2 or high risk MDS. Results Nine patients (6 women) were accrued between May 2011 and September 2011. Median age was 64 years (range, 22–73), WBC 2.4×109/dL (0.7–9.3), Hg 10g/dL (8.2–11), platelets 31×109/dL (14–269), and bone marrow blasts 7% (0%-18%). Seven (78%) patients had therapy related MDS with history of prior chemotherapy/radiotherapy exposure (3 breast cancer, 2 non-Hodgkin's lymphoma, 1 breast and ovarian cancer, and 1 melanoma). Three patients had failed prior therapy: decitabine and haploidentical stem cell transplantation (SCT; n=1), lenalidomide (n=1), and decitabine and TXA-127 (n=1). All patients carried cytogenetic abnormalities: complex (n=4, 3 including −7 and 1 with −5), −7 (n=3, one of them with +8), t(6;9) (n=1), and t(14;16) and del(20) (n=1). Two patients with −7 also carried gene mutations: 1 in CEBPa and 1 IDH2R140Q. Patients received a median of 4 cycles. All 9 patients are evaluable. The overall response rate (ORR; defined as CR+CRi+PR) is 8/9 (89%) and the CR+CRi rate is 7/9 (78%). Five (56%) patients achieved a complete cytogenetic response, including the patient carrying IDH2R140Q, in whom such mutation became undetectable. Eight-week mortality was 0%. Only 1 (11%) patient has died, unrelated to study drug (after allogeneic-SCT). The median duration of response was 45 days (0–229). Reasons for discontinuation were: transition to allogeneic-SCT (n=5), no pracinostat availability by sponsor (n=2), no response (n=1), and progression to AML (n=1). The combination was well tolerated. All toxicities were grade 1 or 2. The most frequent toxicities were fatigue and nausea (56% each). Conclusion The combination of pracinostat and 5-azacitidine was very well tolerated in patients with MDS. The preliminary ORR of 89% is very encouraging, considering that most patients in this study had high-risk cytogenetics and/or had treatment related MDS, both subsets of MDS with very poor prognosis. Disclosures: Ravandi: Celgene: Honoraria, Research Funding. Faderl:Genzyme: Membership on an entity's Board of Directors or advisory committees, Research Funding. Garcia-Manero:SBIO: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 442-442
Author(s):  
Marisa A Brake ◽  
Audrey C Cleuren ◽  
Dakota R Redshaw ◽  
Caitlin Schneider ◽  
Aaron Scholl ◽  
...  

Abstract Background: Factor V Leiden (FVL) is a common thrombosis susceptibility variant in humans. It is incompletely penetrant; this indicates that there are modifiers of FVL that alter thrombosis susceptibility. We used mouse models of FVL (F5L) and heterozygous tissue factor pathway inhibitor deficiency (Tfpi+/-), to identify a perinatal lethal genetic interaction when mice inherited F5L/L Tfpi+/-. This phenotype was used as the basis for a sensitized genome wide ENU mutagenesis screen to identify mutations suppressing lethal thrombosis in F5L/L Tfpi+/- mice. From this screen, we generated multiple independent lines of thrombosuppressed mice, called MF5L, for Modifier of F5L. MF5L16 was a large, highly penetrant (77.2%), multigenerational pedigree containing 136 viable F5L/L Tfpi+/- mice. Aims: In the present study, we aimed to identify and functionally characterize the thrombosuppressor mutation present in MF5L16. Methods: Genomic analyses: We performed whole genome sequencing (WGS) on four MF5L16 F5L/L Tfpi+/- mice. We used comparative bioinformatic analyses to identify variants inherited by all four mice and compiled these variants into candidate variant list. PCR and Sanger sequencing were used to analyze the 136 F5L/L Tfpi+/- mice for inheritance of each of the candidate variants. Functional analyses: We performed biochemical blood coagulation and platelet assays of blood from the Chr18 A mice . Complete blood counts were measured using the Advia 2120 with settings optimized for C57BL/6 mouse blood. Platelet aggregation studies were performed using the Roche Multiplate Aggregometer with ADP and type 1 collagen as the aggregating agents. Results: We analyzed four MF5L16 mice by WGS and identified seven spontaneous mutations that arose in our F5L/L breeding colony that were introduced into MF5L16. Importantly, no coding variants were linked to these variants. Analysis of these seven mutations in all 136 MF5L16 F5L/L Tfpi+/- mice revealed a significant association between a Chromosome 18 intergenic variant (Chr18 G to A, Chr18 A) and F5L/L Tfpi+/- mouse survival (p=0.003). To re-create the suppression of the lethal F5L/L Tfpi+/- phenotype, we bred F5+/L Tfpi+/- Chr18 +/A triple heterozygous mice to F5L/L Chr18 A/A mice to observe the effects of Chr18 A on F5L/L Tfpi+/- mouse survival. Out of 109 mice from this cross, two F5L/L Tfpi+/- Chr18 +/A mice were produced (expected ratio ~1:8). This suggests that the Chr18 A variant suppresses F5L/L Tfpi+/- lethal thrombosis at ~15% penetrance. Complete blood count analysis on Chr18 +/+,Chr18 +/A, and Chr18 A/A mice determined that Chr18 A/A mice had reduced platelet count and distribution width and increased variability in red blood cell (RBC) mean corpuscular volume (n≥4; p<0.05). The Chr18 A/A mice did not display differences in PT or aPTT assays, but had significantly reduced platelet aggregation velocity when stimulated by both ADP and collagen agonists (n≥4; p=0.0002). Additionally, blood smears revealed the presence of poikilocytic RBCs in the Chr18 A/A mice. Conclusions and future directions: Our results establish that a noncoding intergenic Chr18 variant at nucleotide position 62,970,011 (G>A, Chr18 A) contributes to thrombosuppression by reducing platelet reactivity. The observed platelet and RBC phenotypes suggest that a major mechanism of Chr18 A thrombosuppression could be through regulation of gene expression in cells of the myeloid lineage. We are performing additional platelet and blood coagulation analyses to refine the phenotypic differences due to the Chr18 A variant. Comparative transcriptomic analyses are also being performed to identify the genetic pathways involved. Understanding the mechanism in which this intergenic mutation suppresses thrombosis could provide insights into human thrombosis regulation. Disclosures No relevant conflicts of interest to declare.


1998 ◽  
Vol 79 (01) ◽  
pp. 211-216 ◽  
Author(s):  
Lysiane Hilbert ◽  
Claudine Mazurier ◽  
Christophe de Romeuf

SummaryType 2B of von Willebrand disease (vWD) refers to qualitative variants with increased affinity of von Willebrand factor (vWF) for platelet glycoprotein Ib (GPIb). All the mutations responsible for type 2B vWD have been located in the A1 domain of vWF. In this study, various recombinant von Willebrand factors (rvWF) reproducing four type 2B vWD missense mutations were compared to wild-type rvWF (WT-rvWF) for their spontaneous binding to platelets and their capacity to induce platelet activation and aggregation. Our data show that the multimeric pattern of each mutated rvWF is similar to that of WT-rvWF but the extent of spontaneous binding and the capacity to induce platelet activation and aggregation are more important for the R543Q and V553M mutations than for the L697V and A698V mutations. Both the binding of mutated rvWFs to platelets and platelet aggregation induced by type 2B rvWFs are inhibited by monoclonal anti-GPIb and anti-vWF antibodies, inhibitors of vWF binding to platelets in the presence of ristocetin, as well as by aurin tricarboxylic acid. On the other hand, EDTA and a monoclonal antibody directed against GPIIb/IIIa only inhibit platelet aggregation. Furthermore, the incubation of type 2B rvWFs with platelets, under stirring conditions, results in the decrease in high molecular weight vWF multimers in solution, the extent of which appears correlated with that of plasma vWF from type 2B vWD patients harboring the corresponding missense mutation. This study supports that the binding of different mutated type 2B vWFs onto platelet GPIb induces various degrees of platelet activation and aggregation and thus suggests that the phenotypic heterogeneity of type 2B vWD may be related to the nature and/or location of the causative point mutation.


1995 ◽  
Vol 74 (05) ◽  
pp. 1316-1322 ◽  
Author(s):  
Mary Ann McLane ◽  
Jagadeesh Gabbeta ◽  
A Koneti Rao ◽  
Lucia Beviglia ◽  
Robert A Lazarus ◽  
...  

SummaryNaturally-occurring fibrinogen receptor antagonists and platelet aggregation inhibitors that are found in snake venom (disintegrins) and leeches share many common features, including an RGD sequence, high cysteine content, and low molecular weight. There are, however, significant selectivity and potency differences. We compared the effect of three proteins on platelet function: albolabrin, a 7.5 kDa disintegrin, eristostatin, a 5.4 kDa disintegrin in which part of the disintegrin domain is deleted, and decorsin, a 4.5 kDa non-disintegrin derived from the leech Macrobdella decora, which has very little sequence similarity with either disintegrin. Decorsin was about two times less potent than albolabrin and six times less potent than eristostatin in inhibiting ADP- induced human platelet aggregation. It had a different pattern of interaction with glycoprotein IIb/IIIa as compared to the two disintegrins. Decorsin bound with a low affinity to resting platelets (409 nM) and to ADP-activated platelets (270 nM), and with high affinity to thrombin- activated platelets (74 nM). At concentrations up to 685 nM, it did not cause expression of a ligand-induced binding site epitope on the (β3 subunit of the GPIIb/IIIa complex. It did not significantly inhibit isolated GPIIb/IIIa binding to immobilized von Willebrand Factor. At low doses (1.5-3.0 μg/mouse), decorsin protected mice against death from pulmonary thromboembolism, showing an effect similar to eristostatin. This suggested that decorsin is a much more potent inhibitor of platelet aggregation in vivo than in vitro, and it may have potential as an antiplatelet drug.


Sign in / Sign up

Export Citation Format

Share Document