scholarly journals Hereditary Ovarian Cancer: Biology, Response to Chemotherapy and Prognosis

2009 ◽  
Vol 5 (5) ◽  
pp. 543-553 ◽  
Author(s):  
Tamar Safra

Recent evidence has indicated that the prognosis of women with epithelial ovarian cancer who are BRCA-mutation carriers may be better than for noncarriers. Part of the explanation is a higher sensitivity to platinum and other chemotherapies, as was demonstrated in in vitro studies, as well as a possible different biology. BRCA genes are important in double-strand DNA break repair and in other important processes of the cell cycle. Mutation or reduced activity of BRCA genes leads to a higher vulnerability to DNA damage (caused by chemotherapy and radiotherapy) compared with malignant tumors of noncarriers. New targeted drugs, such as poly (ADP-ribose) polymerase-1 and −2 inhibitors, are currently under investigation, as are new biomarkers that will hopefully lead the way to better treatment and longer survival. Testing for the BRCA mutation should be carried out and used as a guide for therapy in most patients with epithelial ovarian cancer.

2003 ◽  
Vol 89 (3) ◽  
pp. 494-498 ◽  
Author(s):  
G Hirsh-Yechezkel ◽  
A Chetrit ◽  
F Lubin ◽  
E Friedman ◽  
T Peretz ◽  
...  

2020 ◽  
Vol 159 (2) ◽  
pp. e27
Author(s):  
Catherine John ◽  
Ilana Cass ◽  
Christine Walsh ◽  
Bobbie J. Rimel ◽  
Kristin N. Taylor ◽  
...  

2021 ◽  
Vol 162 ◽  
pp. S215
Author(s):  
Catherine John ◽  
Robert Jones ◽  
Ilana Cass ◽  
Christine Walsh ◽  
B.J. Rimel ◽  
...  

Author(s):  
Azar Sattarinezhad ◽  
Akbar Rasekhi Kazerouni ◽  
Gholamhossein Ranjbar Omrani ◽  
Mesbah Shams

Abstract Objectives To review non-surgical prevention strategies in women with hereditary breast and ovarian cancer syndromes. Content Women with a gBRCA1 or 2 mutations face a high cumulative breast and ovarian cancer risk. While bilateral mastectomy (PBM) and bilateral salpingo-oophrectomy (PBSO) profoundly reduce the respective cancer risks, they are also associated with considerable side effects. There is therefore an urgent need for alternative and non-surgical risk reduction options. Tamoxifen and aromatase inhibitors have both been evaluated in secondary prevention, but their benefit in primary prevention is currently unknown in BRCA mutation carriers. In addition, their use is compromised by their side effect profile which makes them less appealing for a use in chemoprevention. Summary and outlook Denosumab is a well-tolerated osteoprotective drug, which has been demonstrated to have a potential preventive effect particularly in BRCA1-deficient models in vitro. The prospectively randomized double-blind BRCA-P trial is currently investigating the preventative effect of denosumab in healthy BRCA1 germ line mutation carriers.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Shourong Wang ◽  
Zixiang Wang ◽  
Jieyin Li ◽  
Junchao Qin ◽  
Jianping Song ◽  
...  

AbstractAberrant expression of splicing factors was found to promote tumorigenesis and the development of human malignant tumors. Nevertheless, the underlying mechanisms and functional relevance remain elusive. We here show that USP39, a component of the spliceosome, is frequently overexpressed in high-grade serous ovarian carcinoma (HGSOC) and that an elevated level of USP39 is associated with a poor prognosis. USP39 promotes proliferation/invasion in vitro and tumor growth in vivo. Importantly, USP39 was transcriptionally activated by the oncogene protein c-MYC in ovarian cancer cells. We further demonstrated that USP39 colocalizes with spliceosome components in nuclear speckles. Transcriptomic analysis revealed that USP39 deletion led to globally impaired splicing that is characterized by skipped exons and overrepresentation of introns and intergenic regions. Furthermore, RNA immunoprecipitation sequencing showed that USP39 preferentially binds to exon-intron regions near 5′ and 3′ splicing sites. In particular, USP39 facilitates efficient splicing of HMGA2 and thereby increases the malignancy of ovarian cancer cells. Taken together, our results indicate that USP39 functions as an oncogenic splicing factor in ovarian cancer and represents a potential target for ovarian cancer therapy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hongwei Zhao ◽  
Hasaan Hayat ◽  
Xiaohong Ma ◽  
Daguang Fan ◽  
Ping Wang ◽  
...  

Abstract Artificial Intelligence (AI) algorithms including deep learning have recently demonstrated remarkable progress in image-recognition tasks. Here, we utilized AI for monitoring the expression of underglycosylated mucin 1 (uMUC1) tumor antigen, a biomarker for ovarian cancer progression and response to therapy, using contrast-enhanced in vivo imaging. This was done using a dual-modal (magnetic resonance and near infrared optical imaging) uMUC1-specific probe (termed MN-EPPT) consisted of iron-oxide magnetic nanoparticles (MN) conjugated to a uMUC1-specific peptide (EPPT) and labeled with a near-infrared fluorescent dye, Cy5.5. In vitro studies performed in uMUC1-expressing human ovarian cancer cell line SKOV3/Luc and control uMUC1low ES-2 cells showed preferential uptake on the probe by the high expressor (n = 3, p < .05). A decrease in MN-EPPT uptake by SKOV3/Luc cells in vitro due to uMUC1 downregulation after docetaxel therapy was paralleled by in vivo imaging studies that showed a reduction in probe accumulation in the docetaxel treated group (n = 5, p < .05). The imaging data were analyzed using deep learning-enabled segmentation and quantification of the tumor region of interest (ROI) from raw input MRI sequences by applying AI algorithms including a blend of Convolutional Neural Networks (CNN) and Fully Connected Neural Networks. We believe that the algorithms used in this study have the potential to improve studying and monitoring cancer progression, amongst other diseases.


2017 ◽  
Vol 43 (6) ◽  
pp. 2489-2504 ◽  
Author(s):  
Le Chen ◽  
Ying Yao ◽  
Lijuan Sun ◽  
Jiajia Zhou ◽  
Minmin Miao ◽  
...  

Background/Aims: Our study aims to investigate the role, effect and mechanisms of ESRP1 (epithelial splicing regulatory protein 1) in epithelial-mesenchymal transition (EMT) in epithelial ovarian cancer (EOC). Methods: Microarray and immunohistochemical analysis of ESRP1 expression were performed in EOC cases. The correlations between ESRP1 expression and clinical factors on EOC were assessed. Lentivirus-mediated RNA interference and EGFP vector which contains ESRP1 gene were used to down-regulate and up-regulate ESRP1 expression in human EOC cell lines. Roles of ESRP1 in cell growth, migration and invasion of EOC cells were also measured by Cell Counting Kit-8 and Transwell systems in vitro and by a nude mice intraperitoneal transplantation model in vivo. Results: By the analysis of Gene Expression Omnibus (GEO) (p<0.05) and our own microarray data (p<0.001), ESRP1 expression in EOC was significantly different from normal ovarian tissue. It was abundant in the nuclei of cancer cells and in malignant lesions. However, it was weakly expressed or negative in both normal and benign lesions. High ESRP1 expression in EOC was associated with poor clinical outcomes. Decreased ESRP1 expression significantly increased cell migration and invasion both in vivo and in vitro. Snail strongly repressed ESRP1 transcription through binding to the ESRP1 promoter in EOC cells. Furthermore, ESRP1 regulated the expression of CD44s. Down-regulated ESRP1 resulted in an isoform switching from CD44v to CD44s, which modulated epithelial-mesenchymal transition (EMT) program in EOC. Up-regulatin of ESRP1 was detected in mesenchymal to epithelial transition (MET) in vivo. Conclusions: ESRP1 regulates CD44 alternative splicing during the EMT process which plays an important role in EOC carcinogenesis. In addition, ESRP1 is associated with disease prognosis in EOC.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


Sign in / Sign up

Export Citation Format

Share Document