MANAJEMEN DATA SPASIAL: PENGGUNAAN TANAH WILAYAH PEDESAAN DI SUMATERA BARAT

2019 ◽  
Vol 5 (2) ◽  
pp. 48-53
Author(s):  
Afrital Rezki, S.Pd., M.Si ◽  
Erna Juita ◽  
Dasrizal Dasrizal ◽  
Arie Zella Putra Ulni

Perkembangan penggunaan tanah bergerak horisontal secara spasial ke arah wilayah yang mudah diusahakan. Penggunaan tanah juga bergerak secara vertikal dalam rangka menaikkan mutunya. Penelitian ini bertujuan untuk menganalisis pola penggunaan lahan, bagaimana manajemen penggunaan lahan di satu wilayah berdasarkan batas Nagari. Metode yang digunakan adalah analsisis spasial dengan interpretasi citra penginderaan jauh, survey lapangan, dan analisis deskriptif. Pertumbuhan pemukiman Nagari Sungai Sariak Kecamatan VII Koto Kabupaten Padang Pariaman mengakibatkan pemanfaatan ruang menjadi tumpang tindih. Diperlukan cara-cara pengelolaan dan managemen penggunaan tanah dalam rangka pembangunan berkelanjutan yang menaikkan taraf hidup masyarakat dan tidak menimbulkan kerugian lingkungan.Terdapat 9 jenis penggunaan lahan yang ada di Nagari Sungai Sariak. Penggunaan lahan tersebut adalah Primary Forest, Secondary Forest, Paddy Field, Settlement, Mixed Plantations, Crop Fields, Water Bodies, Bushes, dan Plantations. Penggunaan lahan yang paling luas di Nagari Sungai Sariak adalah jenis penggunaan lahan Primary Forest, sebesar 48% dari total luas wilayah Nagari Sungai Sariak. Pada tahun 2011 sampai tahun 2016, penggunaan lahan paling luas terjadi pada penggunaan lahan jenis Primary Forest yang kemudian menjadi Mixed Plantations. Land use Changes moved horizontally spatially towards areas that are easily cultivated. The land use also moves vertically in order to increase its quality. This study aims to analyze land use patterns, how land use management in one area is based on Nagari boundaries. The method used is spatial analysis with interpretation of remote sensing images, field surveys, and descriptive analysis. The growth of Nagari Sungai Sariak in Kecamatan VII Koto, Kabupaten Padang Pariaman resulted in overlapping use of space. Management methods are needed and management of land use in the framework of sustainable development that raises the standard of living of the community and does not cause environmental losses. There are 9 types of land use in the Nagari Sungai Sariak. The land uses are Primary Forest, Secondary Forest, Paddy Field, Settlement, Mixed Plantations, Crop Fields, Water Bodies, Bushes, and Plantations. The most extensive land use in Nagari Sungai Sariak is the type of Primary Forest land use, amounting to 48% of the total area of the Nagari Sungai Sariak. From 2011 to 2016, the most extensive land use occurred in Primary Forest land uses which later became Mixed Plantations.

2016 ◽  
Vol 9 (2) ◽  
pp. 147-156
Author(s):  
Devianti Devianti

Abstrak. Sub Sub DAS Cikujang merupakan salah satu bagian dari Sub DAS Cimanuk hulu yang dapat menyumbang sedimen ke waduk Jatigede yang berasal dari erosi sebagai akibat perubahan penggunaan lahan yang tidak sesuai dengan kondisi fisik lahan. Hasil kajian memperlihatkan  pola perubahan penggunaan lahan di Sub Sub DAS Cikujang periode 1994-2009, terjadi perubahan penggunaan lahan dari kawasan lindung menjadi kawasan budidaya seluas 742,20 ha. Kawasan lindung pada tahun 1994 seluas 3.213,03 ha menurun menjadi 2.470,83 ha pada tahun 2009 dan kawasan budidaya pada tahun 1994 seluas 9.532,41 ha meningkat menjadi 10.274,61 ha pada tahun 2009 dengan laju perubahan 185,55 ha/tahun. Laju penurunan luasan hutan primer mencapai 54,45 ha/tahun, dan pada tahun 2009 tidak terdapat lagi lahan dengan fungsi sebagai hutan primer. Laju penurunan luasan hutan sekunder mencapai 135,90 ha/tahun dari 2.995,25 ha pada tahun 1994 menjadi 2.451,65 ha pada tahun 2009. Pola perubahan penggunaan lahan di Sub Sub DAS Cikujang sebagian besar dipengaruhi dengan pola perubahan hutan primer dan hutan sekunder pada kawasan lindung. Sedangkan pola perubahan penggunaan lahan pada kawasan budidaya dipengaruhi pola perubahan lahan kebun campuran, tegalan/ladang, perkebunan, dan sawah Land-Use Change Pattern in Cikujang Catchment Area Abstract. Cikujang catchment area is one part of the subzone Cimanuk that can contribute sediment upstream reservoirs to Jatigede derived from erosion as a result of changes in land use that is not in accordance with the physical condition of the land. Based on analysis result of land-use change pattern in Cikujang catchment area in 1994 – 2009 period, land-use had changed 742,20ha from protected areas to cultivated areas, where protected area had decreased from 3.213,03ha in 1994 to 2.470,83ha in 2009 and cultivated area had increased from 10.274,61 ha in 1994 to10.274,61 ha in 2009 with changing rate ha/year. The rate of decreasing primary forest area was 54.45ha/year, as a result there was no land function as primary forest in 2009.  The rate of decreasing secondary forest area was 135,90ha/year ranging from 2.995,25ha in 1994 to 2.451,65ha in 2009. Land-use change pattern in Cikujang catchment area dominantly was influenced by changing pattern of protected forest and secondary forest in protected area, but in cultivated area land-use change pattern was influenced by changing pattern of farm, grassland, and rice field.


2021 ◽  
Vol 13 (7) ◽  
pp. 18809-18816
Author(s):  
Pathik Kumar Jana ◽  
Priyanka Halder Mallick ◽  
Tanmay Bhattacharya

For gauging suitability of zygopteran odonates as bioindicators of ecosystems, an attempt was made to record the seasonal diversity of damselflies from seven different types of habitats in Paschim Medinipur District, West Bengal covering 14 land use sites. The study revealed existence of 19 species of damselflies belonging to 10 genera under two families. While the riparian zone had maximum number of species (15), paddy field had the lowest number (six). Ceriagrion coromandelianum and Agriocnemis pygmaea were the most common species. C. coromandelianum was eudominant in grassland and wetland-forest interface, whereas A. pygmaea was eudominant in fish pond and paddy field. Six species, viz., Paracercion calamorum, P. malayanum, Pseudagrion australasiae, P. decorum, P. spencei, and P. microcephalum were confined only to the riparian zone. Maximum abundance of damselflies was found in the riparian zone and minimum in the paddy field. Damselflies exhibited a distinct peak in March–April and a lesser peak in September–October. Most of the land use patterns exhibited similar zygopteran faunal composition. Species diversity index was moderate (1.4–2.5) and evenness index was on the higher side (0.76–0.94). Dominance Index ranged from 26.2 to 64.6. Riparian zone appeared to be the least stressed and most equitable habitat with highest diversity and evenness index and lowest dominance index. Paddy field seemed to be the harshest habitat for damselflies with least diversity and highest dominance index. The present study suggests that community analysis of damselflies can be quite useful in the assessment of the quality of any ecosystem.


2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Alvyra Šlepetienė ◽  
Kazimiež Duchovski ◽  
Jonas Volungevičius

The aim of this study – to evaluate the status of organic carbon (OC) under different land uses of soils formed in alluvial deposits. The soil samples were collected from 0–10, 10–20 and 20–30 cm depths in three field replicates.Three land uses were investigated: arable land, grassland and forest. The experimental site is situated near Surviliškis, Kėdainiai District (55°26′08.37′′N, 24°02′27.75′′Y) in Central Lowland of Lithuania. A total of 27 soil samples, collected from 0–10, 10–20 and 20–30 cm depths in three field replicates, were analysed for OC. The samples were prepared for analysis by removing plant residues, grinding and sieving through a 0.25 mm sieve. For all land uses, the highest content of OC was found in the upper 0–10 cm soil layer of the soil, with the highest values found in the forest land use. Fast-growing deciduous trees are an effective means to increase the content of OC in alluvial soil, especially in the 0–10 cm layer. The distribution of OC in the soil layers depended on the land use. Grassland and forest land uses allow OC to be preserved throughout the 0–30 cm layer, with less OC differentiation than in arable land. This could be attributed to the specificities of organic matter accumulation and degradation in different land uses. Not only the amount of labile organic carbon (similar to total organic carbon) was highest (0.392 g kg–1) in forest soil in the 0–10 cm layer, it also had a higher relative share in the total organic carbon (2.9%) than in other land uses – arable land and grassland (2.3–2.4%).


2021 ◽  
Vol 39 (4 supplement) ◽  
pp. 1501-1506
Author(s):  
Pranita JUNGPANICH ◽  
◽  
Katawut WAIYASUSRI ◽  

Land-use change for examining the expansion of built-up and recreation, required effective techniques of spatial assessment, especially in areas with limited space such as Koh Chang island in Thailand which needed to be emphasized. The research objectives were to study land-use patterns in Koh Chang area in Trat province from 2000-2020, and study land-use change, especially the expansion of buildings and recreation area during that period, using geo-informatic technique. The study found that most of Koh Chang is forest land, up to 80% of the island, but the trend is declining. On the other hand, the area that has increased in number is built-up and recreation, which has increased from 7.22 km2 to 18.28 km2 and up to 253.19% in the past 20 years. The efficiency of geo-informatic technology can extract useful information, especially spatial data on land-use change. Therefore, it is known from which areas built-up and recreation areas are transformed in order to bring such information into a spatial database system for supporting decision-making in directing, monitoring and controlling areas for further expansion of tourism business in order not to create an impact on the environment.


2020 ◽  
Vol 12 (4) ◽  
pp. 478-483
Author(s):  
Surya Prabha A.C. ◽  
Velumani R. ◽  
Senthivelu M. ◽  
Arulmani K. ◽  
Pragadeesh S.

Soil organic carbon (SOC) plays a vital role in soil fertility and is important for its contributions to mitigation and adaptation to climate change. The present study was undertaken to estimate the SOC stock in soils under different land uses of Cauvery Delta zone of Tamil Nadu. Four different land uses were selected for the study viz, Forests, Agriculture, Agro-forestry and Plantations. Soil samples were collected from Madukkur and Kalathur soil series of Cauvery Delta zone for soil carbon analysis. The soil samples were fractionated into three aggregate size classes viz., macro-aggregates (250-2000µm), micro-aggregates (53-250 µm) and silt and clay sized fraction (<53 µm). At 0-30 cm depth, the forest land use stored the maximum SOC stock in the different size fractions viz. macro-sized fraction (73.0 Mg ha-1), a micro-sized fraction (76.0 Mg ha-1) and silt+clay sized fraction (77.0 Mg ha-1) in Madukkur series. Agriculture land use registered the lowest SOC stock. Among the different size fractions, silt+clay sized fraction (< 53 µm) retained the maximum SOC in all the land uses. In Kalathur series also, maximum soil organic carbon stock was recorded in forest land use. The data generated in the study will be beneficial to the user groups viz., farmers in identifying the most suitable land use for enhancing the storage of soil organic carbon thereby improving yields of crops and trees.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Katie M. McGee ◽  
Teresita M. Porter ◽  
Michael Wright ◽  
Mehrdad Hajibabaei

Abstract Tropical forests are fundamental ecosystems, essential for providing terrestrial primary productivity, global nutrient cycling, and biodiversity. Despite their importance, tropical forests are currently threatened by deforestation and associated activities. Moreover, tropical regions are now mostly represented by secondary forest regrowth, with half of the remaining tropical forests as secondary forest. Soil invertebrates are an important component to the functioning and biodiversity of these soil ecosystems. However, it remains unclear how these past land-use activities and subsequent secondary forest developments have altered the soil invertebrate communities and any potential ecological consequences associated with this. DNA metabarcoding offers an effective approach to rapidly monitor soil invertebrate communities under different land-use practices and within secondary forests. In this study, we used DNA metabarcoding to detect community-based patterns of soil invertebrate composition across a primary forest, a 23-year-old secondary forest, and a 33-year-old secondary forest and the associated soil environmental drivers of the soil invertebrate community structure in the Maquenque National Wildlife Refuge of Costa Rica (MNWR). We also used a species contribution analysis (SIMPER) to determine which soil invertebrate groups may be an indication of these soils reaching a pre-disturbed state such as a primary forest. We found that the soil invertebrate community composition at class, order, family, and ESV level were mostly significantly different across that habitats. We also found that the primary forest had a greater richness of soil invertebrates compared to the 23-year-old and 33-year-old secondary forest. Moreover, a redundancy analysis indicated that soil moisture influenced soil invertebrate community structure and explained up to 22% of the total variation observed in the community composition across the habitats; whereas soil invertebrate richness was structured by soil microbial biomass carbon (C) (Cmic) and explained up to 52% of the invertebrate richness across the primary and secondary forests. Lastly, the SIMPER analysis revealed that Naididae, Entomobryidae, and Elateridae could be important indicators of soil and forest recuperation in the MNWR. This study adds to the increasing evidence that soil invertebrates are intimately linked with the soil microbial biomass carbon (Cmic) and that even after 33 years of natural regrowth of a forest, these land use activities can still have persisting effects on the overall composition and richness of the soil invertebrate communities.


2003 ◽  
Vol 1831 (1) ◽  
pp. 141-149
Author(s):  
Amica Bose ◽  
Jon D. Fricker

A neighborhood land use pattern designed to accommodate the most frequently taken nonwork trips within an acceptable distance from home was developed. Instead of starting from a specified set of land uses and studying the travel characteristics, mixed land use patterns that fit the observed trip-making behavior of people were formulated. The result is called a reverse-engineered neighborhood, or REN. The REN was tested against a Euclidean development that had separated land uses. Results show a substantial reduction in nonwork trip lengths (in terms of both travel time and distance) in the REN compared with the Euclidean development. The efficiency of the REN is the result of having more trip destination choices available to residents at acceptable distances. The procedures in the analysis are described and demonstrated, the results of the analysis are presented, and directions for further study are suggested.


2015 ◽  
Vol 2 (12) ◽  
pp. 150449 ◽  
Author(s):  
Maxime Lenormand ◽  
Miguel Picornell ◽  
Oliva G. Cantú-Ros ◽  
Thomas Louail ◽  
Ricardo Herranz ◽  
...  

The advent of geolocated information and communication technologies opens the possibility of exploring how people use space in cities, bringing an important new tool for urban scientists and planners, especially for regions where data are scarce or not available. Here we apply a functional network approach to determine land use patterns from mobile phone records. The versatility of the method allows us to run a systematic comparison between Spanish cities of various sizes. The method detects four major land use types that correspond to different temporal patterns. The proportion of these types, their spatial organization and scaling show a strong similarity between all cities that breaks down at a very local scale, where land use mixing is specific to each urban area. Finally, we introduce a model inspired by Schelling's segregation, able to explain and reproduce these results with simple interaction rules between different land uses.


2009 ◽  
Vol 25 (3) ◽  
pp. 281-300 ◽  
Author(s):  
Joseph Hawes ◽  
Catarina da Silva Motta ◽  
William L. Overal ◽  
Jos Barlow ◽  
Toby A. Gardner ◽  
...  

Abstract:The response of tropical fauna to landscape-level habitat change is poorly understood. Increased conversion of native primary forest to alternative land-uses, including secondary forest and exotic tree plantations, highlights the importance of assessing diversity patterns within these forest types. We sampled 1848 moths from 335 species of Arctiidae, Saturniidae and Sphingidae, over a total of 30 trap-nights. Sampling was conducted during the wet season 2005, using three light-traps at 15 sites within areas of primary forest, secondary forest and Eucalyptus urograndis plantations in northern Brazilian Amazonia. The Jari study region provides one of the best opportunities to investigate the ecological consequences of land-use change, and this study is one of the first to examine patterns of diversity for a neotropical moth assemblage in a human-dominated landscape in lowland Amazonia. We found that the three moth families responded consistently to disturbance in terms of abundance and community structure but variably in terms of species richness, in a manner apparently supporting a life-history hypothesis. Our results suggest that secondary forests and Eucalyptus plantations can support a substantial level of moth diversity but also show that these forest types hold assemblages with significantly distinct community structures and composition from primary forest. In addition, the ability of these converted land-uses to support primary forest species may be enhanced by proximity to surrounding primary forest, an issue which requires consideration when assessing the diversity and composition of mobile taxa in human-dominated landscapes.


Sign in / Sign up

Export Citation Format

Share Document