scholarly journals The Role of DNA Gyrase (gyrA) in Ciprofloxacin-Resistant Locally Isolates Pseudomonas aeruginosa in Al-Khadhmiya Teaching Hospital Baghdad, Iraq

2019 ◽  
Vol 13 (1) ◽  
pp. 499-503
Author(s):  
Jabbar S Hassan ◽  
Montaha A Al-Safar ◽  
Thanaa Rasheed Abdul Rhman
1995 ◽  
Vol 39 (10) ◽  
pp. 2248-2252 ◽  
Author(s):  
E. Cambau ◽  
E. Perani ◽  
C. Dib ◽  
C. Petinon ◽  
J. Trias ◽  
...  

2009 ◽  
Vol 33 (2) ◽  
pp. 32-36
Author(s):  
AL-abedey S. J.m

The aim of this study was to determine the important role of Pseudomonas aeruginosa in secondary infection of hospitalized patients, and test the sensitivity of this bacteria to some antibiotics were used in treatment of its infection .90 samples were collected from different cases in Diwanya teaching hospital ,maternity & children hospital .The results show isolation of 29 isolates 0f Pseudomonas aeruginosa (32.2%) .Microscopic examination,cultural characteristic on selective and differential media and biochemical testing were used in the diagnosis of this bacteria.The sensitivity test of this bacteria to some antibiotics was done by using disc diffusion method .Allisolates were resistant to ampicillin (100%),while it gave high sensitivity to ciprofloxacin(2.3%).


2019 ◽  
Vol 52 (3) ◽  
Author(s):  
Gulnaz Parveen ◽  
Faizah Urooj ◽  
Hafiza Asma Shafique ◽  
Afshan Rahman ◽  
Syed Ehteshamul Haque

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 414
Author(s):  
Didem Kart ◽  
Tuba Reçber ◽  
Emirhan Nemutlu ◽  
Meral Sagiroglu

Introduction: Alternative anti-biofilm agents are needed to combat Pseudomonas aeruginosa infections. The mechanisms behind these new agents also need to be revealed at a molecular level. Materials and methods: The anti-biofilm effects of 10 plant-derived compounds on P. aeruginosa biofilms were investigated using minimum biofilm eradication concentration (MBEC) and virulence assays. The effects of ciprofloxacin and compound combinations on P. aeruginosa in mono and triple biofilms were compared. A metabolomic approach and qRT-PCR were applied to the biofilms treated with ciprofloxacin in combination with baicalein, esculin hydrate, curcumin, and cinnamaldehyde at sub-minimal biofilm inhibitory concentration (MBIC) concentrations to highlight the specific metabolic shifts between the biofilms and to determine the quorum sensing gene expressions, respectively. Results: The combinations of ciprofloxacin with curcumin, baicalein, esculetin, and cinnamaldehyde showed more reduced MBICs than ciprofloxacin alone. The quorum sensing genes were downregulated in the presence of curcumin and cinnamaldehyde, while upregulated in the presence of baicalein and esculin hydrate rather than for ciprofloxacin alone. The combinations exhibited different killing effects on P. aeruginosa in mono and triple biofilms without affecting its virulence. The findings of the decreased metabolite levels related to pyrimidine and lipopolysaccharide synthesis and to down-regulated alginate and lasI expressions strongly indicate the role of multifactorial mechanisms for curcumin-mediated P. aeruginosa growth inhibition. Conclusions: The use of curcumin, baicalein, esculetin, and cinnamaldehyde with ciprofloxacin will help fight against P. aeruginosa biofilms. To the best of our knowledge, this is the first study of its kind to define the effect of plant-based compounds as possible anti-biofilm agents with low MBICs for the treatment of P. aeruginosa biofilms through metabolomic pathways.


2021 ◽  
Vol 22 (8) ◽  
pp. 3982
Author(s):  
Karolina Kotecka ◽  
Adam Kawalek ◽  
Kamil Kobylecki ◽  
Aneta Agnieszka Bartosik

Pseudomonas aeruginosa is a facultative human pathogen, causing acute and chronic infections that are especially dangerous for immunocompromised patients. The eradication of P. aeruginosa is difficult due to its intrinsic antibiotic resistance mechanisms, high adaptability, and genetic plasticity. The bacterium possesses multilevel regulatory systems engaging a huge repertoire of transcriptional regulators (TRs). Among these, the MarR family encompasses a number of proteins, mainly acting as repressors, which are involved in response to various environmental signals. In this work, we aimed to decipher the role of PA3458, a putative MarR-type TR from P. aeruginosa. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3458 showed changes in the mRNA level of 133 genes; among them, 100 were down-regulated, suggesting the repressor function of PA3458. Concomitantly, ChIP-seq analysis identified more than 300 PA3458 binding sites in P. aeruginosa. The PA3458 regulon encompasses genes involved in stress response, including the PA3459–PA3461 operon, which is divergent to PA3458. This operon encodes an asparagine synthase, a GNAT-family acetyltransferase, and a glutamyl aminopeptidase engaged in the production of N-acetylglutaminylglutamine amide (NAGGN), which is a potent bacterial osmoprotectant. We showed that PA3458-mediated control of PA3459–PA3461 expression is required for the adaptation of P. aeruginosa growth in high osmolarity. Overall, our data indicate that PA3458 plays a role in osmoadaptation control in P. aeruginosa.


Author(s):  
Shuyi Hou ◽  
Jiaqin Zhang ◽  
Xiaobo Ma ◽  
Qiang Hong ◽  
Lili Fang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document