scholarly journals Load Carrying Capacity of Geosynthetic Encased Stone Column in Pond Ash Fills

Author(s):  
Sudheer Kumar. J
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yogendra K. Tandel ◽  
Chandresh H. Solanki ◽  
Atul K. Desai

Stone column is often employed for strengthening of an embankment seated on deep soft clay. But in very soft clay having undrained shear strength less than or equal to 15 kPa, stone column may not derive adequate load carrying capacity and undergo large lateral deformation due to inadequate lateral confinement. In such circumstances, reinforcement to individual stone column by geosynthetics enhances load carrying capacity and reduces lateral deformation. This paper addresses parametric study on behaviour of embankment resting on Geosynthetic Reinforced Stone Column (GRSC) considering parameters such as stone column spacing to diameter ratio, deformation modulus of stone column material, geosynthetic stiffness, thickness of soft clay, and height of embankment by 3D numerical analysis. Finally, equation for Settlement Improvement Factor (SIF), defined as ratio between settlement of embankment without treatment and with geosynthetic reinforced stone column, is proposed that correlates with the major influence parameters such as stone column spacing to diameter ratio, deformation modulus of soft clay, and geosynthetic stiffness.


Author(s):  
Jignesh Patel ◽  
Chandresh Solanki ◽  
Yogendra Tandel ◽  
Bhavin Patel

This study aims to perform laboratory model tests to investigate the load-deformation behavior of stone columns (SCs), pervious concrete columns (PCCs), and composite columns (CCs). Here, CC refers to the column which has the upper portion made of PCC and the lower portion made of SC. The parameters investigated in this study include column diameters, column lengths, and installation methods (pre-cast and cast-in-situ methods). The results of the model tests reveal that the axial load-carrying capacity of PCC is nearly 8 times more than that of SC with the same diameter. Moreover, it is also observed that at the top portion of SC, with the PCC length which is about 3.75 to 5 times the column diameter, the load-carrying capacity can significantly increase. It is concluded that the installation methods have marginal influence on the load-deformation behavior of PCC.


2013 ◽  
Vol 59 (3) ◽  
pp. 359-379 ◽  
Author(s):  
Y.K. Tandel ◽  
C.H. Solanki ◽  
A.K. Desai

Abstract The application of stone column technique for improvement of soft soils has attracted a considerable attention during the last decade. However, in a very soft soil, the stone columns undergo excessive bulging, because of very low lateral confinement pressure provided by the surrounding soil. The performance of stone column can be improved by the encapsulation of stone column by geosynthetic, which acts to provide additional confinement to columns, preventing excessive bulging and column failure. In the present study, a detailed experimental study on behavior of single column is carried out by varying parameters like diameter of the stone column, length of stone column, length of geosynthetic encapsulation and stiffness of encapsulation material. In addition, finite-element analyses have been performed to access the radial deformation of stone column. The results indicate a remarkable increase in load carrying capacity due to encapsulation. The load carrying capacity of column depends very much upon the diameter of the stone column and stiffness of encapsulation material. The results show that partial encapsulation over top half of the column and fully encapsulated floating column of half the length of clay bed thickness give lower load carrying capacity than fully encapsulated end bearing column. In addition, radial deformation of stone column decreases with increasing stiffness of encapsulation material.


Author(s):  
J.S. Yadav ◽  
K. Kumar ◽  
R.K. Dutta ◽  
A. Garg

Purpose: This study aims to study the load – settlement behaviour of circular footing rested on encased single stone column. Design/methodology/approach: The effect of vertical, horizontal and combined verticalhorizontal encasement of stone column on the load carrying capacity were examined numerically. The effect of stone column dimension (80 mm and 100 mm), length (400 mm and 500 mm), and spacing of reinforcement on the load carrying capacity and reinforcement ratio were assessed. Findings: The obtained results revealed that the load carrying capacity of geotextile encased stone columns are more than ordinary stone columns. For vertically encased stone columns as the diameter increases, the advantage of encasement decreases. Whereas, for horizontally encased stone column and combined vertical- horizontal encased stone column, the performance of encasement intensifies as the diameter of stone column increases. The improvement in the load carrying capacity of clay bed reinforced with combined verticalhorizontal encased stone columns are higher than vertical encased stone columns or horizontal encased stone column. The maximum performance of encasement was observed for VHESC1 of D = 80 mm. Research limitations/implications: For this study, the diameter of footing and stone column was kept same. The interface strength factor between stone column and clay bed was not considered. Practical implications: The encased stone column could be use improve the laod bearing capacity of weak soils. Originality/value: Many studies are available in literature regarding use of geosynthetic as vertical encasement and horizontal encasement of stone column. The study on combined effect of vertical and horizontal encasement of stone column on load carrying capacity of weak soil is very minimal. Keeping this in view, the present work was carried out.


2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2005 ◽  
Vol 10 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Z. Kala

The load-carrying capacity of the member with imperfections under axial compression is analysed in the present paper. The study is divided into two parts: (i) in the first one, the input parameters are considered to be random numbers (with distribution of probability functions obtained from experimental results and/or tolerance standard), while (ii) in the other one, the input parameters are considered to be fuzzy numbers (with membership functions). The load-carrying capacity was calculated by geometrical nonlinear solution of a beam by means of the finite element method. In the case (ii), the membership function was determined by applying the fuzzy sets, whereas in the case (i), the distribution probability function of load-carrying capacity was determined. For (i) stochastic solution, the numerical simulation Monte Carlo method was applied, whereas for (ii) fuzzy solution, the method of the so-called α cuts was applied. The design load-carrying capacity was determined according to the EC3 and EN1990 standards. The results of the fuzzy, stochastic and deterministic analyses are compared in the concluding part of the paper.


2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


2020 ◽  
Vol 2020 (21) ◽  
pp. 146-153
Author(s):  
Anatolii Dekhtyar ◽  
◽  
Oleksandr Babkov ◽  

Sign in / Sign up

Export Citation Format

Share Document