scholarly journals Real Time Facial Gesture Recognition using Deep Learning

Author(s):  
Abaikesh Sharma

The human faces have vibrant frequency of characteristics, which makes it difficult to analyze the facial expression. Automated real time emotions recognition with the help of facial expressions is a work in computer vision. This environment is an important and interesting tool between the humans and computers. In this investigation an environment is created which is capable of analyzing the person’s emotions using the real time facial gestures with the help of Deep Neural Network. It can detect the facial expression from any image either real or animated after facial extraction (muscle position, eye expression and lips position). This system is setup to classify images of human faces into seven discrete emotion categories using Convolutional Neural Networks (CNNs). This type of environment is important for social interaction.

Automatic Face expression is the significant device in computer apparition and a predictable knowledge discovery application in automation, personal security and moveable devices. However, the state-of-the-art machine and deep learning (DL) methods has complete this technology game altering and even better human matching part in terms of accurateness. This paper focuses on put on one of the progressive deep learning tools in face expression to achieve higher accuracy. In this paper, we focusses on Automatic Facial Expressions and Identification of different face reactions using Convolution Neural Network. Here, we framed our own data and trained by convolution neural networks. Human behavior can be easily predicted using their facial expression, which helps marketing team, psychological team and other required team to understand the human facial expression more clearly.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


2021 ◽  
Vol 336 ◽  
pp. 07004
Author(s):  
Ruoyu Fang ◽  
Cheng Cai

Obstacle detection and target tracking are two major issues for intelligent autonomous vehicles. This paper proposes a new scheme to achieve target tracking and real-time obstacle detection of obstacles based on computer vision. ResNet-18 deep learning neural network is utilized for obstacle detection and Yolo-v3 deep learning neural network is employed for real-time target tracking. These two trained models can be deployed on an autonomous vehicle equipped with an NVIDIA Jetson Nano motherboard. The autonomous vehicle moves to avoid obstacles and follow tracked targets by camera. Adjusting the steering and movement of the autonomous vehicle according to the PID algorithm during the movement, therefore, will help the proposed vehicle achieve stable and precise tracking.


2020 ◽  
Vol 226 ◽  
pp. 02020
Author(s):  
Alexey V. Stadnik ◽  
Pavel S. Sazhin ◽  
Slavomir Hnatic

The performance of neural networks is one of the most important topics in the field of computer vision. In this work, we analyze the speed of object detection using the well-known YOLOv3 neural network architecture in different frameworks under different hardware requirements. We obtain results, which allow us to formulate preliminary qualitative conclusions about the feasibility of various hardware scenarios to solve tasks in real-time environments.


Author(s):  
M A Isayev ◽  
D A Savelyev

The comparison of different convolutional neural networks which are the core of the most actual solutions in the computer vision area is considers in hhe paper. The study includes benchmarks of this state-of-the-art solutions by some criteria, such as mAP (mean average precision), FPS (frames per seconds), for the possibility of real-time usability. It is concluded on the best convolutional neural network model and deep learning methods that were used at particular solution.


Human feelings are mental conditions of sentiments that emerge immediately as opposed to cognitive exertion. Some of the basic feelings are happy, angry, neutral, sad and surprise. These internal feelings of a person are reflected on the face as Facial Expressions. This paper presents a novel methodology for Facial Expression Analysis which will aid to develop a facial expression recognition system. This system can be used in real time to classify five basic emotions. The recognition of facial expressions is important because of its applications in many domains such as artificial intelligence, security and robotics. Many different approaches can be used to overcome the problems of Facial Expression Recognition (FER) but the best suited technique for automated FER is Convolutional Neural Networks(CNN). Thus, a novel CNN architecture is proposed and a combination of multiple datasets such as FER2013, FER+, JAFFE and CK+ is used for training and testing. This helps to improve the accuracy and develop a robust real time system. The proposed methodology confers quite good results and the obtained accuracy may give encouragement and offer support to researchers to build better models for Automated Facial Expression Recognition systems.


Author(s):  
Ankita Singh ◽  
◽  
Pawan Singh

The Classification of images is a paramount topic in artificial vision systems which have drawn a notable amount of interest over the past years. This field aims to classify an image, which is an input, based on its visual content. Currently, most people relied on hand-crafted features to describe an image in a particular way. Then, using classifiers that are learnable, such as random forest, and decision tree was applied to the extract features to come to a final decision. The problem arises when large numbers of photos are concerned. It becomes a too difficult problem to find features from them. This is one of the reasons that the deep neural network model has been introduced. Owing to the existence of Deep learning, it can become feasible to represent the hierarchical nature of features using a various number of layers and corresponding weight with them. The existing image classification methods have been gradually applied in real-world problems, but then there are various problems in its application processes, such as unsatisfactory effect and extremely low classification accuracy or then and weak adaptive ability. Models using deep learning concepts have robust learning ability, which combines the feature extraction and the process of classification into a whole which then completes an image classification task, which can improve the image classification accuracy effectively. Convolutional Neural Networks are a powerful deep neural network technique. These networks preserve the spatial structure of a problem and were built for object recognition tasks such as classifying an image into respective classes. Neural networks are much known because people are getting a state-of-the-art outcome on complex computer vision and natural language processing tasks. Convolutional neural networks have been extensively used.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Daniel G. E. Thiem ◽  
Paul Römer ◽  
Matthias Gielisch ◽  
Bilal Al-Nawas ◽  
Martin Schlüter ◽  
...  

Abstract Background Hyperspectral imaging (HSI) is a promising non-contact approach to tissue diagnostics, generating large amounts of raw data for whose processing computer vision (i.e. deep learning) is particularly suitable. Aim of this proof of principle study was the classification of hyperspectral (HS)-reflectance values into the human-oral tissue types fat, muscle and mucosa using deep learning methods. Furthermore, the tissue-specific hyperspectral signatures collected will serve as a representative reference for the future assessment of oral pathological changes in the sense of a HS-library. Methods A total of about 316 samples of healthy human-oral fat, muscle and oral mucosa was collected from 174 different patients and imaged using a HS-camera, covering the wavelength range from 500 nm to 1000 nm. HS-raw data were further labelled and processed for tissue classification using a light-weight 6-layer deep neural network (DNN). Results The reflectance values differed significantly (p < .001) for fat, muscle and oral mucosa at almost all wavelengths, with the signature of muscle differing the most. The deep neural network distinguished tissue types with an accuracy of > 80% each. Conclusion Oral fat, muscle and mucosa can be classified sufficiently and automatically by their specific HS-signature using a deep learning approach. Early detection of premalignant-mucosal-lesions using hyperspectral imaging and deep learning is so far represented rarely in in medical and computer vision research domain but has a high potential and is part of subsequent studies.


Author(s):  
Huixin Yang ◽  
Xiang Li ◽  
Wei Zhang

Abstract Despite the rapid development of deep learning-based intelligent fault diagnosis methods on rotating machinery, the data-driven approach generally remains a "black box" to researchers, and its internal mechanism has not been sufficiently understood. The weak interpretability significantly impedes further development and applications of the effective deep neural network-based methods. This paper contributes efforts to understanding the mechanical signal processing of deep learning on the fault diagnosis problems. The diagnostic knowledge learned by the deep neural network is visualized using the neuron activation maximization and the saliency map methods. The discriminative features of different machine health conditions are intuitively observed. The relationship between the data-driven methods and the well-established conventional fault diagnosis knowledge is confirmed by the experimental investigations on two datasets. The results of this study can benefit researchers on understanding the complex neural networks, and increase the reliability of the data-driven fault diagnosis model in the real engineering cases.


2021 ◽  
Author(s):  
Efstratios Kontellis ◽  
Christos Troussas ◽  
Akrivi Krouska ◽  
Cleo Sgouropoulou

The COVID-19 pandemic provoked many changes in our everyday life. For instance, wearing protective face masks has become a new norm and is an essential measure, having been imposed by countries worldwide. As such, during these times, people must wear masks to enter buildings. In view of this compelling need, the objective of this paper is to create a real-time face mask detector that uses image recognition technology to identify: (i) if it can detect a human face in a video stream and (ii) if the human face, which was detected, was wearing an object that it looked like a face mask and if it was properly worn. Our face mask detection model is using OpenCV Deep Neural Network (DNN), TensorFlow and MobileNetV2 architecture as an image classifier and after training, achieved 99.64% of accuracy.


Sign in / Sign up

Export Citation Format

Share Document