scholarly journals Structural Analysis of Gas Turbine Blade

Author(s):  
Dr. Ramakotaiah Maddumala

A turbine blade is a machine component which makes up the turbine section of a gas turbine. These blades are responsible for extracting energy from the high temperature, high pressure gas produced by the combustor. The turbine blades are often the limiting component of the gas turbine. To survive in this difficult environment , turbine blades often use exotic materials like super alloys and many different methods of cooling , such as internal air channels and thermal barrier coatings. A common failure mode for turbine machine is high cycle of fatigue of compressor and turbine blades due to high dynamic stress caused by blade vibration and temperature has significant effect on gas turbine blades. The stresses with detrimental effect to the nozzle and blade were principally of thermal type, developed due to high temperature gradients across the air foil wall. These generate thermal fatigue mechanism and high steady state load leading to creep mechanism. In this project, a turbine blade is designed and modelled in NX Unigraphics software which is an advanced high-end CAD/CAE/CAM. The design is modified by changing the base of the blade to increase overall efficiency. Since the design of turbo machinery is complex and efficiency is directly related to material performance and material selection is of prime importance. In this project few materials are considered for turbine blade –titanium alloy and Nickel alloy. Optimisation will be done by varying the materials by performing structural analysis and thermal analysis on the turbine blades for both the designs

Author(s):  
Dilip Kumar ◽  
Sanjay Barad ◽  
T. N. Suresh

This paper describes the design optimization study of an under platform damper to mitigate high vibration problem of a gas turbine rotor blade under resonance condition. An existing theoretical model explicitly, Casba friction damper model was used to evaluate the dynamic characteristics of the turbine blade with under platform damper. Turbine blade is approximated as two degrees of spring-damper-mass system, which is dynamically equivalent to real turbine blades for its first two eigen values. Blade tip response predictions were carried out for different damper mass, stiffness and coefficient of friction under simulated rotational speed of the rotor, to arrive at an optimum mass to control the blade tip response. As a practical application, along with damper mass optimization, shape and mass distribution of the damper is obtained by design trials to ensure good contact between the blade root and damper upper surface. Contact analysis was carried using the ANSYS software. The asymmetric skewed damper geometry posed complications with respect to modelling and optimisation. In realistic application, with the kind of uncertainties in contact pattern, variation in friction coefficient, geometric tolerances, validation/verification plays a major role in assessing the design. As part of verification of this damper design, a full scale gas turbine engine test program was envisaged and completed. Modified optimum damper was implanted as a design change, engine was instrumented for blade vibration measurement. Non-Intrusive Stress Measurement system was used for measuring blade tip amplitudes from all the blades in the rotor. Test blade tip vibration was analysed and compared against the predications. This optimised damper configuration has showed significant reduction in blade amplitudes during full-scale gas turbine testing, in comparison to original design proving the efficacy of new modified damper.


2018 ◽  
Vol 90 (9) ◽  
pp. 1305-1316
Author(s):  
Timo Rogge ◽  
Ricarda Berger ◽  
Linus Pohle ◽  
Raimund Rolfes ◽  
Jörg Wallaschek

Purpose The purpose of this study a fast procedure for the structural analysis of gas turbine blades in aircraft engines. In this connection, investigations on the behavior of gas turbine blades concentrate on the analysis and evaluation of starting dynamics and fatigue strength. Besides, the influence of structural mistuning on the vibration characteristics of the single blade is analyzed and discussed. Design/methodology/approach A basic computation cycle is generated from a flight profile to describe the operating history of the gas turbine blade properly. Within an approximation approach for high-frequency vibrations, maximum vibration amplitudes are computed by superposition of stationary frequency responses by means of weighting functions. In addition, a two-way coupling approach determines the influence of structural mistuning on the vibration of a single blade. Fatigue strength of gas turbine blades is analyzed with a semi-analytical approach. The progressive damage analysis is based on MINER’s damage accumulation assuming a quasi-stable behavior of the structure. Findings The application to a gas turbine blade shows the computational capabilities of the approach presented. Structural characteristics are obtained by robust and stable computations using a detailed finite element model considering different load conditions. A high quality of results is realized while reducing the numerical costs significantly. Research limitations/implications The method used for analyzing the starting dynamics is based on the assumption of a quasi-static state. For structures with a sufficiently high stiffness, such as the gas turbine blades in the present work, this procedure is justified. The fatigue damage approach relies on the existence of a quasi-stable cyclic stress condition, which in general occurs for isotropic materials, as is the case for gas turbine blades. Practical implications Owing to the use of efficient analysis methods, a fast evaluation of the gas turbine blade within a stochastic analysis is feasible. Originality/value The fast numerical methods and the use of the full finite element model enable performing a structural analysis of any blade structure with a high quality of results.


Author(s):  
Paolo Del Turco ◽  
Michele D’Ercole ◽  
Nicola Pieroni ◽  
Massimiliano Mariotti ◽  
Francesco Gamberi ◽  
...  

Major limitations for power turbine blades for oil & gas and industrial applications are Creep and HCF (High Cycle Fatigue). Power Turbine blades, being normally uncooled, are generally not affected by high temperature gradients; therefore LCF (Low Cycle Fatigue) doesn’t constitute their main limiting life factor. If creep is often not a limiting factor for aircraft engines blades, where inspection, maintenance and replacement intervals are more frequent, it becomes one of the key drivers for an industrial gas turbine where required flow path components life is at least one order larger. To avoid HCF failures, it would be desirable to avoid stimuli crossing natural frequencies in the entire operative range. However, due to the wide operative range and high number of stimuli present, the avoidance of potential resonance crossings is often not possible. This is the one of the reasons why a prototype validation campaign is usually performed, where, during the test, vibratory stress levels are compared to HCF endurance limits. This paper describes the processes used in GE Infrastructure Oil&Gas to verify, design, develop and test a PT (Power Turbine) blade for an upgraded 35 MW-class aero-derivative gas turbine. Initial assessment phases, new material selection, concurrent engineering efforts, bench testing characterization and final validation on FETT (First Engine to Test) are described. A particular focus is given to the analytical tools (i.e. modal cyclic symmetry analysis) used during the design phase and validation tests.


Author(s):  
Muthuvel Murugan ◽  
Anindya Ghoshal ◽  
Michael Walock ◽  
Andy Nieto ◽  
Luis Bravo ◽  
...  

Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings with the goal of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the middle-east nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100% efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damage includes blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, and plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical turbine blade ceramic coatings at the microstructure level. Finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the gas generator turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed during hot burner rig testing to determine sand particle incoming velocities and their rebound characteristics upon impact on coated material targets. Further, engine sand ingestion tests were carried out to test the CMAS tolerance of the coated nozzle vanes. The findings from this on-going collaborative research to develop the next-gen sand tolerant coatings for turbine blades are presented in this paper.


Alloy Digest ◽  
2004 ◽  
Vol 53 (12) ◽  

Abstract Udimet L-605 is a high-temperature aerospace alloy with excellent strength and oxidation resistance. It is used in applications such as gas turbine blades and combustion area parts. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: CO-109. Producer or source: Special Metals Corporation.


2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Shijie Guo

This paper demonstrates the investigations on the blade vibration of a radial inflow micro gas turbine wheel. Firstly, the dependence of Young's modulus on temperature was measured since it is a major concern in structure analysis. It is demonstrated that Young's modulus depends on temperature greatly and the dependence should be considered in vibration analysis, but the temperature gradient from the leading edge to the trailing edge of a blade can be ignored by applying the mean temperature. Secondly, turbine blades suffer many excitations during operation, such as pressure fluctuations (unsteady aerodynamic forces), torque fluctuations, and so forth. Meanwhile, they have many kinds of vibration modes, typical ones being blade-hub (disk) coupled modes and blade-shaft (torsional, longitudinal) coupled modes. Model experiments and FEM analysis were conducted to study the coupled vibrations and to identify the modes which are more likely to be excited. The results show that torque fluctuations and uniform pressure fluctuations are more likely to excite resonance of blade-shaft (torsional, longitudinal) coupled modes. Impact excitations and propagating pressure fluctuations are more likely to excite blade-hub (disk) coupled modes.


Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


1980 ◽  
Author(s):  
J. Liburdi ◽  
J. O. Stephens

This paper presents the effects of deterioration of gas turbine blade life with prolonged service exposure. This deterioration is primarily due to internal microstructural changes and the formation of creep voids or cavitation. Methods of evaluating residual blade life or life trend curves are presented along with a documentation of the creep damage observed. The extension of blade life by Hot isostatic pressing versus reheat treatment is discussed and data is presented to show that complete recovery of properties can be achieved even after the material has suffered extensive internal creep damage. As a result, the time between overhauls for blades can be significantly extended, and the need for replacement blades can be minimized.


In the past three decades, it is very challenging for the researchers to design and development a best gas turbine engine component. Engine component has to face different operating conditions at different working environments. Nickel based superalloys are the best material to design turbine components. Inconel 718, Inconel 617, Hastelloy, Monel and Udimet are the common material used for turbine components. Directional solidification is one of the conventional casting routes followed to develop turbine blades. It is also reported that the raw materials are heat treated / age hardened to enrich the desired properties of the material implementation. Accordingly they are highly susceptible to mechanical and thermal stresses while operating. The hot section of the turbine components will experience repeated thermal stress. The halides in the combination of sulfur, chlorides and vanadate are deposited as molten salt on the surface of the turbine blade. On prolonged exposure the surface of the turbine blade starts to peel as an oxide scale. Microscopic images are the supportive results to compare the surface morphology after complete oxidation / corrosion studies. The spectroscopic results are useful to identify the elemental analysis over oxides formed. The predominant oxides observed are NiO, Cr2O3, Fe2O3 and NiCr2O4. These oxides are vulnerable on prolonged exposure and according to PB ratio the passivation are very less. In recent research, the invention on nickel based superalloys turbine blades produced through other advanced manufacturing process is also compared. A summary was made through comparing the conventional material and advanced materials performance of turbine blade material for high temperature performance.


Author(s):  
Karthik Krishnaswamy ◽  
◽  
Srikanth Salyan ◽  

The performance of a gas turbine during the service life can be enhanced by cooling the turbine blades efficiently. The objective of this study is to achieve high thermohydraulic performance (THP) inside a cooling passage of a turbine blade having aspect ratio (AR) 1:5 by using discrete W and V-shaped ribs. Hydraulic diameter (Dh) of the cooling passage is 50 mm. Ribs are positioned facing downstream with angle-of-attack (α) of 30° and 45° for discrete W-ribs and discerte V-ribs respectively. The rib profiles with rib height to hydraulic diameter ratio (e/Dh) or blockage ratio 0.06 and pitch (P) 36 mm are tested for Reynolds number (Re) range 30000-75000. Analysis reveals that, area averaged Nusselt numbers of the rib profiles are comparable, with maximum difference of 6% at Re 30000, which is within the limits of uncertainty. Variation of local heat transfer coefficients along the stream exhibited a saw tooth profile, with discrete W-ribs exhibiting higher variations. Along spanwise direction, discrete V-ribs showed larger variations. Maximum variation in local heat transfer coefficients is estimated to be 25%. For experimented Re range, friction loss for discrete W-ribs is higher than discrete-V ribs. Rib profiles exhibited superior heat transfer capabilities. The best Nu/Nuo achieved for discrete Vribs is 3.4 and discrete W-ribs is 3.6. In view of superior heat transfer capabilities, ribs can be deployed in cooling passages near the leading edge, where the temperatures are very high. The best THPo achieved is 3.2 for discrete V-ribs and 3 for discrete W-ribs at Re 30000. The ribs can also enhance the power-toweight ratio as they can produce high thermohydraulic performances for low blockage ratios.


Sign in / Sign up

Export Citation Format

Share Document