scholarly journals Machine Learning Model for Stock Market Prediction

Author(s):  
Dr. S. T. Patil

: In recent time’s stock market predictions is gaining more attention, maybe due to the fact that if the trend of the market is successfully predicted, the investors may be better guided. A stock exchange is a system where you can buy and sell stocks. By stock we mean the share in the ownership of the company. Companies buy stocks to get the money they need to grow. Whereas people buy the stocks, also called as securities as investment or ways of possibly earning money. A stock Market Prediction model will help people to predict particular company’s stock price before they want to invest. This system will help people to invest wisely.

In the stock market, it is important to have accurate prediction of future behavior of stock price..Because of the great chance of financial loss as well as scoring profits at the same time, it is mandatory to have a secure prediction of the values of the stocks. But when it comes to predicting the value of a stock in future we tend to follow stock market experts but as technology is progressing we may use these technologies rather than following human experts who may be biased many times. Stock price prediction has been interesting area for investors and researchers. This article proposes an approach towards prediction of stock price using machine learning model Long Short Term Memory. This is an ensemble learning method that has been an exceedingly successful model for predicting sequence of numbers and words. Long Short Term Memory is a machine learning model for prediction. This technique is used to forecast the future stock price of a specific stock by using historical data of the stock gathered from Yahoo! Finance.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2717
Author(s):  
Nusrat Rouf ◽  
Majid Bashir Malik ◽  
Tasleem Arif ◽  
Sparsh Sharma ◽  
Saurabh Singh ◽  
...  

With the advent of technological marvels like global digitization, the prediction of the stock market has entered a technologically advanced era, revamping the old model of trading. With the ceaseless increase in market capitalization, stock trading has become a center of investment for many financial investors. Many analysts and researchers have developed tools and techniques that predict stock price movements and help investors in proper decision-making. Advanced trading models enable researchers to predict the market using non-traditional textual data from social platforms. The application of advanced machine learning approaches such as text data analytics and ensemble methods have greatly increased the prediction accuracies. Meanwhile, the analysis and prediction of stock markets continue to be one of the most challenging research areas due to dynamic, erratic, and chaotic data. This study explains the systematics of machine learning-based approaches for stock market prediction based on the deployment of a generic framework. Findings from the last decade (2011–2021) were critically analyzed, having been retrieved from online digital libraries and databases like ACM digital library and Scopus. Furthermore, an extensive comparative analysis was carried out to identify the direction of significance. The study would be helpful for emerging researchers to understand the basics and advancements of this emerging area, and thus carry-on further research in promising directions.


Author(s):  
Prof. Gowrishankar B S

Stock market is one of the most complicated and sophisticated ways to do business. Small ownerships, brokerage corporations, banking sectors, all depend on this very body to make revenue and divide risks; a very complicated model. However, this paper proposes to use machine learning algorithms to predict the future stock price for exchange by using pre-existing algorithms to help make this unpredictable format of business a little more predictable. The use of machine learning which makes predictions based on the values of current stock market indices by training on their previous values. Machine learning itself employs different models to make prediction easier and authentic. The data has to be cleansed before it can be used for predictions. This paper focuses on categorizing various methods used for predictive analytics in different domains to date, their shortcomings.


2019 ◽  
Vol 34 (4) ◽  
pp. 221-229 ◽  
Author(s):  
Carlo M. Bertoncelli ◽  
Paola Altamura ◽  
Edgar Ramos Vieira ◽  
Domenico Bertoncelli ◽  
Susanne Thummler ◽  
...  

Background: Intellectual disability and impaired adaptive functioning are common in children with cerebral palsy, but there is a lack of studies assessing these issues in teenagers with cerebral palsy. Therefore, the aim of this study was to develop and test a predictive machine learning model to identify factors associated with intellectual disability in teenagers with cerebral palsy. Methods: This was a multicenter controlled cohort study of 91 teenagers with cerebral palsy (53 males, 38 females; mean age ± SD = 17 ± 1 y; range: 12-18 y). Data on etiology, diagnosis, spasticity, epilepsy, clinical history, communication abilities, behaviors, motor skills, eating, and drinking abilities were collected between 2005 and 2015. Intellectual disability was classified as “mild,” “moderate,” “severe,” or “profound” based on adaptive functioning, and according to the DSM-5 after 2013 and DSM-IV before 2013, the Wechsler Intelligence Scale for Children for patients up to ages 16 years, 11 months, and the Wechsler Adult Intelligence Scale for patients ages 17-18. Statistical analysis included Fisher’s exact test and multiple logistic regressions to identify factors associated with intellectual disability. A predictive machine learning model was developed to identify factors associated with having profound intellectual disability. The guidelines of the “Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis Statement” were followed. Results: Poor manual abilities ( P ≤ .001), gross motor function ( P ≤ .001), and type of epilepsy (intractable: P = .04; well controlled: P = .01) were significantly associated with profound intellectual disability. The average model accuracy, specificity, and sensitivity was 78%. Conclusion: Poor motor skills and epilepsy were associated with profound intellectual disability. The machine learning prediction model was able to adequately identify high likelihood of severe intellectual disability in teenagers with cerebral palsy.


Author(s):  
Vignesh CK

This paper deals with the techniques of attempting to calculate the future value of a company stock or any other financial instrument which is being traded in a stock exchange. This prediction plays a great role in many financing and investing decisions. This calculation can be done by Machine learning by training a model to identify the trend from past data in order to predict the future. The main topic of study here will be the comparative analysis of the SVM and LTSM algorithms. KEYWORDS: Machine learning, Stock price, Stock market, Support vector machine, neural network, long short term memory.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1294
Author(s):  
Honglei Wang ◽  
Zhenlei Li ◽  
Dazhao Song ◽  
Xueqiu He ◽  
Aleksei Sobolev ◽  
...  

Rockburst is a serious hazard in underground engineering, and accurate prediction of rockburst risk is challenging. To construct an intelligent prediction model of rockburst risk with interpretability and high accuracy, three binary scorecards predicting different risk levels of rockburst were constructed using ChiMerge, evidence weight theory, and the logistic regression algorithm. An intelligent rockburst prediction model based on scorecard methodology (IRPSC) was obtained by integrating the three scorecards. The effects of hazard sample category weights on the missed alarm rate, false alarm rate, and accuracy of the IRPSC were analyzed. Results show that the accuracy, false alarm rate, and missed alarm rate of the IRPSC for rockburst prediction in riverside hydropower stations are 75%, 12.5%, and 12.5%, respectively. Setting higher hazard sample category weights can reduce the missed alarm rate of IRPSC, but it will lead to a higher false alarm rate. The IRPSC can adaptively adjust the threshold and weight value of the indicator and convert the abstract machine learning model into a tabular form, which overcomes the commonly black box problems of machine learning model, as well as is of great significance to the application of machine learning in rockburst risk prediction.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 317
Author(s):  
Hamza Imran ◽  
Nadia Moneem Al-Abdaly ◽  
Mohammed Hammodi Shamsa ◽  
Amjed Shatnawi ◽  
Majed Ibrahim ◽  
...  

Concrete is the most widely used building material, but it is also a recognized pollutant, causing significant issues for sustainability in terms of resource depletion, energy use, and greenhouse gas emissions. As a result, efforts should be concentrated on reducing concrete’s environmental consequences in order to increase its long-term viability. In order to design environmentally friendly concrete mixtures, this research intended to create a prediction model for the compressive strength of those mixtures. The concrete mixtures that were used in this study to build our proposed prediction model are concrete mixtures that contain both recycled aggregate concrete (RAC) and ground granulated blast-furnace slag (GGBFS). A white-box machine learning model known as multivariate polynomial regression (MPR) was developed to predict the compressive strength of eco-friendly concrete. The model was compared with the other two machine learning models, where one is also a white-box machine learning model, namely linear regression (LR), and the other is the black-box machine learning model, which is a support vector machine (SVM). The newly suggested model shows robust estimation capabilities and outperforms the other two models in terms of R2 (coefficient of determination) and RMSE (root mean absolute error) measurements.


Author(s):  
Rahayu Abdul Rahman ◽  
◽  
Suraya Masrom ◽  
Nor Balkish Zakaria ◽  
Sunarti Halid

-External auditor is one of the governance mechanisms in mitigating corporate managerial misconduct and thereby enhance the credibility of accounting information. Thus, the main objective of this study is to develop machine learning prediction model on auditor choice of the firm which signal the quality of auditing and financial reporting processes.This paper presents the fundamental knowledge on the design and implementation of machine learning model based on four selected algorithms tested on the real dataset of 2,262 firm-year observations of companies listed on Malaysian stock exchange from 2000 to 2007. The performance of each machine learning algorithm on the auditor choice dataset has been observed based on three groups of features selection namely firm characteristics, governance and ownership. The findings indicated that the machine learning models present better accuracy performance with ownership features selection mainly with the Naïve Bayes algorithm. Keywords-Auditor Choice, Machine Learning, Prediction


Sign in / Sign up

Export Citation Format

Share Document