Eco-Friendly Green Synthesis of MgO Nanoparticles from Zingiber Officinale(Ginger) Root Extract and its Antibacterial Application

Author(s):  
R. D. More

In this study preparation of MgO nanoparticles using Zingiber officinale (ginger) aqueous root extract by using green method. The green synthesis approaches are recognized by many scientists due to its cost effective, simple, eco-friendly. The stability and reduction of Mg+2 ions to MgO nanoparticles were characterized by UV-Visible spectroscopic analysis. From UV-Visible spectroscopy, higher band gap energy of 7.8 eV is obtained in the near visible region at the wavelength of 300 nm. The Zingiber officinale (ginger) root extract act as reducing agent for stabilization of particle size as well as medicinal value result showed a significant antibacterial activity against pathogenic bacteria, E.Coli.and S.aureus. The present investigation deals with the green synthesis of MgO nanoparticles and its antibacterial effect on selected bacteria.

2021 ◽  
Vol 2021 ◽  
pp. 1-6 ◽  
Author(s):  
Saka Abel ◽  
Jule Leta Tesfaye ◽  
R. Shanmugam ◽  
L. Priyanka Dwarampudi ◽  
Gudeta Lamessa ◽  
...  

A green deposition method of zinc oxide nanoparticles using coffee leaf extraction was successfully prepared. The use of these preparation techniques is accepted by many researchers because it is nonexpensive and simple and has no environmental impact during the operation. The determination and reduction of Zn ions to ZnO NPs were characterized by using a UV-visible spectroscope. The UV-visible spectroscopy result reveals that the large band gap energy is observed in the visible region at the wavelength of 300 nm. X-ray diffraction and SEM analysis confirm that the deposited nanoparticle is highly crystalline with (111), (222), and (100) planes and cubic shape structure. The coffee leaf extraction serves as a reducing agent for stability of the particle length, where its medicinal value outcome showed an important antibacteria of the pathogenic type which appeared on the wound. The present research deals with the green synthesis of ZnO NPs as well as its application in toxicity reduction.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Saka Abel ◽  
Jule Leta Tesfaye ◽  
Nagaraj Nagaprasad ◽  
R. Shanmugam ◽  
L. Priyanka Dwarampudi ◽  
...  

This paper investigates the technique of biosynthesis of nanoparticles of zinc oxide from the extraction of moringa leaves. Many researchers recognize the use of this method of green culinary technique because it is cost-effective and has no negative impact on the environment; however, this paper focuses on the bacteria chosen for the green synthesis, which was not addressed by many of the researchers. The firmness and reduction of Zn ions in nanoparticles of zinc oxide were analyzed with a UV-visible spectroscope. Its results show that a wide bandgap was observed in the visible region at a wavelength of 350 nanometers. Extraction of moringa leaves serves as a promising agent for the balance of particle size. The result of medical value shows significant antibacterial activity in contrast to the type of pathogenic bacteria Escherichia coli and Staphylococcus aureus. From the XRD results, there are no further peaks that correspond to impurities that are discovered, demonstrating the great purity of the provided results.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2383
Author(s):  
Majid Sharifi-Rad ◽  
Pawel Pohl ◽  
Francesco Epifano ◽  
José M. Álvarez-Suarez

Today, the green synthesis of metal nanoparticles is a promising strategy in material science and nanotechnology. In this research, silver nanoparticles (AgNPs) were synthesized through the high-efficient, cost-effective green and facile process, using the Astragalus tribuloides Delile. root extract as a bioreduction and capping agent at room temperature. UV–Vis spectroscopy was applied for the investigation of the reaction proceedings. To characterize the greenly synthesized AgNPs, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), and transmission electron microscopy (TEM) analyses were utilized. In addition, the total phenolics and flavonoids contents, antioxidant, antibacterial, and anti-inflammatory activities of the greenly synthesized AgNPs and the A. tribuloides root extract were evaluated. The results indicated that the AgNPs had spherical morphology and crystalline structure with the average size of 34.2 ± 8.0 nm. The total phenolics and flavonoids contents of the greenly synthesized AgNPs were lower than those for the A. tribuloides root extract. The resultant AgNPs exhibited the appropriate antioxidant activity (64%) as compared to that for the A. tribuloides root extract (47%). The antibacterial test approved the higher bactericidal activity of the resulting AgNPs on the Gram-positive and Gram-negative bacteria in comparison to the A. tribuloides root extract. Considering the anti-inflammatory activity, the greenly synthesized AgNPs showed a stranger effect than the A. tribuloides root extract (82% versus 69% at 500 μg/mL). Generally, the AgNPs that were fabricated by using the A. tribuloides root extract had appropriate antioxidant, antibacterial, and anti-inflammatory activities and, therefore, can be considered as a promising candidate for various biomedical applications.


2018 ◽  
Vol 21 (1) ◽  
pp. 037-042
Author(s):  
Durai Chella Priya ◽  
Daniel Thanabalan ◽  
Johnson Henry ◽  
Kannusamy Mohanraj ◽  
Ganesan Sivakumar ◽  
...  

In recent years there has been growing interest in the materials suitable for real time storage application. Sb2S3 is a prospective material in this regard due to good photoconductivity. In this contest, thin films of Sb2S3 and Bi3+ doped Sb2S3 were deposited onto the transparent glass substrate by thermal evaporation method. The structural, optical and electrical properties were investigated by XRD, UV-Visible, Photoluminescence, and Impedance spectroscopic techniques. The XRD patterns confirm the orthorhombic crystal structured Sb2S3 and the inclusion of Bi3+ ions in the crystal system. UV-Visible analysis exhibited wide optical absorption in the visible region for both Sb2S3 and Bi3+ doped films and their band gap energy was found to be 1.60 eV and 1.55 eV respectively. The photoluminescence spectra showed a strong emission at 361nm. The value of capacitance, dielectric constant and real part of impedance decreases with increasing frequency for both the samples.


2006 ◽  
Vol 957 ◽  
Author(s):  
Toshiyuki Kawaharamura ◽  
Toshiyuki Kawaharamura ◽  
Hiroyuki Nishinaka ◽  
Shizuo Fujita

ABSTRACTDeposition of Zn1-xMgxO thin films on glass substrates has been investigated by the simple and cost-effective mist CVD technique. A water solution of zinc acetate and magnesium acetate was used as the source of Zn and Mg. The solution was ultrasonically atomized, and the aerosols hence formed were supplied by the N2 carrier gas to the substrates. The band gap energy of ZnMgO was successfully controlled from 3.25 eV (ZnO) to 3.75 eV with the concentration ratio [Mg]/([Zn]+[Mg]) in the solution. The transparency in the visible region was higher than 90% and the surface RMS roughness was 7.5 nm (an example for ZnO) despite the polycrystalline structure; they are satisfactory for the optical applications. A UV photodetctor with interdigital electrode structure on the ZnMgO surface was fabricated, where the photoresponsivity of 2.6 A/W at 350 nm and the lowest detectable power of about 1 μW were obtained. Although these values are satisfactory for the simple UV detection but the existence of deep defects is deteriorating the dynamic response of the detector device.


Author(s):  
Wilson Mbiti Njue ◽  
Jackson Kilonzo Kithokoi ◽  
Jane Mburu ◽  
Henry Mwangi ◽  
Sauda Swaleh

Metal nanoparticles in the field of nanotechnology are of great interest to modern scientific research due to their size effects, medical uses and, catalytic, electronic and optical properties. Green synthesis of metal nanoparticles is a feasible alternative to chemical methods as it is environmentally friendly and cost effective. In continuation with our research on green synthesis of silver nanoparticles using Kenyan medicinal plants, we here report the synthesis of novel silver nanoparticles (AgNPs) on ultrasonic bath using Adansonia digitata leaves extracts and analysis of their antibacterial activity. The nanoparticles were characterized by UV-Vis, High Resolution Transmission Electron Microscopy (HRTEM), FTIR spectroscopy and Energy Dispersive X-ray (EDX). EDX analysis affirmed the nanoparticles were pure silver. Crystalline nature of the nanoparticles was confirmed by bright circular spots in the Selected Area Electron Diffraction (SAED) in HRTEM image. The AgNPs were spherical with an average size 13 nm. FTIR analysis showed strong –C=C- and –OH stretching bands due to compounds capping the nanoparticles. The synthesized AgNPs showed high inhibition zones of 17.1±0.130 mm towards Gram-negative bacteria E. coli and 12.9±0.082mm towards Gram positive bacteria S. aureus. The aqueous A. digitata extract had no effect on growth inhibition of test bacteria. The study showed that the silver nanoparticles synthesized from the plant’s leaves extract had antibacterial activity against both Gram negative and positive pathogenic bacteria. The nanoparticles can be utilized towards developing novel drugs useful in combating pathogens.


2019 ◽  
Vol 31 (3) ◽  
pp. 551-554 ◽  
Author(s):  
Arun Kumar Khajuria ◽  
Abha Negi ◽  
N.S. Bisht ◽  
V. Maurya ◽  
Anuj Kandwal

Stable zinc oxide nanoparticles were synthesized by using green approach of nanotechnology. The present investigation aimed to synthesize, stable, cost effective, rapid, eco-friendly approach for the bio-reduction of zinc nitrate hexahydarate to their nano size using phytochemicals present in the root extract of Viola canescens. The synthesized nanoparticles were further characterized by UV-visible, XRD, FTIR, SEM techniques and tested against the Gram-negative and Gram-positive pathogenic cultures of bacteria. The average size of synthesized nanoparticles was less than 11 nm with hexagonal morphology. The clear zone of inhibition against tested bacteria showed their capability as antimicrobial agent.


2015 ◽  
Vol 1087 ◽  
pp. 267-271
Author(s):  
Siti Atiqah Ishak ◽  
S.M. Iskandar ◽  
Azhar Abdul Rahman

The aim of this study is to determine sensitivity of new recipes polymer gel HEMATEG with varied x-ray exposure by using UV-visible spectrophotometer as an evaluation technique. The gels were irradiated by x-ray radiation and the polymerization of HEMATEG were followed. Polymerization was read based on absorption spectra in the range wavelength UV 300 nm to 700 nm. The dependency of polymerization with increasing of exposure dose was determined by changes in the band gap energy (Eg) and Urbach energy (∆E). In the UV-visible region,Egwith indirect transition of HEMATEG were decreased with increasing radiation dose while,∆Ewere increased with increasing radiation dose. This observation supported the increase of structured disorder of the polymer with increasing radiation dose. This study proved that HEMATEG had a high potential to be used as a 3-dimensional dosimeter in the diagnostic x-ray.


1995 ◽  
Vol 48 (5) ◽  
pp. 887 ◽  
Author(s):  
M Ashraf Chaudhry ◽  
Anwar Manzoor Rana ◽  
M Altaf ◽  
M Shakeel Bilal

The optical absorption spectra of some binary and ternary phosphate glasses are studied in the UV-visible region by using a spectrophotometer. The observed absorbance versus wavelength curves do not show any sharp edges in these glasses. The optical band gap energies are found to depend significantly on glass composition. The optical band gap energy is found to increase with increasing ZnO content in binary and ternary glass systems.


Sign in / Sign up

Export Citation Format

Share Document