Pneumonia Detection from Chest X-Rays using Neural Networks
Pneumonia is one of the most serious diseases which cause the most deaths in the world. Viruses, bacteria, and fungi can cause pneumonia. The infection from spreading to the lungs in the human body. In order to diagnose this infection, a chest x-ray is carried out. The doctor uses X-ray image in order to diagnose or monitor the treatment of states in which inflammation of the lungs. X-rays are also used in the diagnosis of diseases such as emphysema, lung cancer, cancer of the line, and pipe, and tuberculosis (tb). However, a diagnosis of pneumonia requiring medical experts to comment on its presence felt in the chest x-ray. For decades, the auto- diagnosis (CAD) systems have been used for the respiratory disease based on chest X-ray images. Deep learning allows machines can quickly extract and classify objects from a photo. Ilham, with the great success of deep learning, we use a deep learning approach to detection of pneumonia into the work. Convolutional neural network that was developed for this study is the inflammation of the lungs. Supervised learning is ANCHORED to the use of features and functions. In general, the data of 5826 images with the help of one of the Kaggle.com. The CNN training and testing, that is, an open set of data. In the proposed method, the high success rate of accurate classification is achieved.