scholarly journals Use of Waste Ceramic as Aggregate in Concrete

Author(s):  
Vidhi Sharma

Abstract: This research paper represents the experimental study on use of ceramic waste material as an aggregate in concrete. To reach the goal of sustainable development utilization of waste materials in concrete production is very much useful. The ceramic aggregate used in this study was recycled from industrial ceramic tile waste in India. From the results it can be seen that it is possible to produce a concrete with good strength by using ceramic waste as an aggregate in .It is also seen from the results that the compressive strength characteristics of ceramic aggregate concrete met the required criteria set by various international standards and codes, which shows the ability of ceramic waste to be used as a substitute to the conventional aggregates in concrete. We replaced the coarse aggregate in concrete by 100% to thewaste ceramic aggregate of size 10mm. The water cementratio taken was 0.30 for concrete production and compared it with normal aggregate concrete of M20 grade. By the decrease in water/cement ratio, high strength concrete canbe obtained. But it is found that the workability will be very low. In our project the required workability was achieved by the use of maximum water-cement ratio .To overcome this use of several admixtures like super-plasticizers and silica fume are recommended to add in the mixing so that the workability can be improved. Keywords: Sustainable development, Ceramic waste as aggregate

2015 ◽  
Vol 730 ◽  
pp. 11-14 ◽  
Author(s):  
Hai Long Zhang ◽  
Chang Chun Pei

By ANSYS finite element analysis we study the impact-span moment and deflection of high strength recycled concrete beam in state of initial cracking and yield with different water-cement ratio and recycled coarse aggregate replacement rate. The results showed that: 1With the increase of water-cement ratio and recycled coarse aggregate replacement rate, the deflection is on the rise. 2With the increase of recycled coarse aggregate replacement rate, the yield moment has a slight upward trend. And with the increase of water-cement ratio and recycled coarse aggregate replacement rate, the span deflection at the state of yield has a growing trend.


2018 ◽  
Vol 9 (4) ◽  
pp. 110
Author(s):  
Nur Azzimah Binti Zamri ◽  
Khairunisa Muthusamy ◽  
Andri Kusbiantoro

Palm oil industry is one of the important industry that contribute to the country’s prosperity. This flourishing industry however also causes environmental problems namely air pollution, soil degradation as well as water pollution due to waste disposal issue. At the same time, intensive cement production and granite mining is damaging the environment and natural habitats. Hence, various efforts have been made by researchers to minimize the effect of pollution including integrating oil palm wastes in construction as building materials. In this study, granite aggregate was fully replaced by palm oil clinker (POC) in lightweight aggregate concrete production. In order to reduce the utilization of cement in concrete, palm oil fuel ash (POFA) was ground to improve its pozzolanic reactivity to partially replace cement in lightweight aggregate concrete. From this investigation, the best performance concrete was attributed by POC LWAC with 20% POFA when the water cement ratio and superplasticizer are 0.45 and 1.0%. Inclusion of water cement ratio and superplasticizer of 0.35 and 0.8% would adversely affects the workability and strength of POC LWAC with POFA.


2016 ◽  
Vol 866 ◽  
pp. 58-62 ◽  
Author(s):  
Oluwarotimi M. Olofinnade ◽  
Julius M. Ndambuki ◽  
Anthony N. Ede ◽  
David O. Olukanni

Reusing of waste glass in concrete production is among the attractive option of achieving waste reduction and preserving the natural resources from further depletion thereby protecting the environment and achieving sustainability. This present study examines the possible reuse of waste glass crushed into fine and coarse aggregate sizes as partial substitute for natural fine and coarse aggregate in concrete. The variables in this study is both the fine and coarse aggregate while the cement and water-cement ratio were held constant. The crushed glass was varied from 0 – 100% in steps of 25% by weight to replace the both the natural fine and coarse aggregate in the same concrete mix. Concrete mixes were prepared using a mix proportion of 1:2:4 (cement: fine aggregate: coarse aggregate) at water-cement ratio of 0.5 targeting a design strength of 20 MPa. Tests were carried out on total number of 90 concrete cube specimens of size 150 x 150 x150 mm and 90concrete cylinder specimens of dimension 100 mm diameter by 200 mm height after 3, 7, 14, 28, 42 and 90 days of curing. Test results indicated that the compressive and split tensile strength of the hardened concrete decreases with increasing waste glass content compared with the control. However, concrete mix made with 25% waste glass content compared significantly well with the control and can be suitably adopted for production of light weight concrete.


2013 ◽  
Vol 740 ◽  
pp. 734-738 ◽  
Author(s):  
A.M. Mustafa Al Bakri ◽  
M.N. Norazian ◽  
H. Kamarudin ◽  
M.A.A. Mohd Salleh ◽  
A. Alida

The main focus of this research is to study the strength of concrete with ceramic waste as coarse aggregate. The sources of ceramic waste are obtained from the industrial in Malaysia. Presently, in ceramics industries the production goes as waste, which is not under going the recycle process yet. The potential of recycled ceramic waste as a substitute for coarse aggregates in concrete has been investigated. The recycle ceramic waste as aggregate was used. Concrete mixes with a 28 days characteristic strength of 20 MPa were prepared using water/cement ratio of 0.4, 0.5 and 0.7. The strength development of the concrete mixes containing recycled ceramic waste aggregates was compared to that of conventional concrete. The result show that the concrete mixes containing recycled ceramic waste aggregates achieve strength levels between 80 to 95 % compared to the conventional concrete. This indicates that the recycled ceramic waste has a potentially to be used as coarse aggregates for concrete.


2013 ◽  
Vol 648 ◽  
pp. 55-58
Author(s):  
Xiao Qing Yu ◽  
Mao Lin ◽  
Guang Long Geng ◽  
Yue Han Li ◽  
Li Jia

Low and easy brittle characteristics of lightweight aggregate concrete tensile strength, shear strength, combined with high strength lightweight concrete requirements in the selection select strength Lytag, silica fume, superplasticizer material, preparationhigh strength lightweight aggregate concrete. Experimental study on the water-cement ratio, coarse aggregate rate ratio factors on the strength of lightweight aggregate concrete.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1891 ◽  
Author(s):  
Changyong Li ◽  
Fei Wang ◽  
Xiangsheng Deng ◽  
Yizhuo Li ◽  
Shunbo Zhao

In this paper, a new recycled aggregate concrete (RAC) was produced with composite coarse aggregate and fine recycled aggregate. The composite coarse aggregate was mixed into continuous gradation by large particle natural aggregate with small particle recycled aggregate. To explore the time-dependent developments of the compressive strength and splitting tensile strength of this new RAC, 320 groups of cubic specimens were tested at different curing ages from 3 days to 360 days to measure the compressive and splitting tensile strengths. The amount of large particle natural aggregate varied from zero to 70% in mass of the total coarse aggregate. The water/cement ratio was taken as 0.60, 0.49, 0.41 and 0.36 to represent four strength grades of the RAC at about C20, C30, C40 and C50. Based on the tested results, the curves of the compressive and tensile strengths of the RAC that changed with curing age are plotted, which clearly exhibit that the amount of large particle natural aggregate had a rational range in different strength grades of the RAC which had better aging strength. When the RAC was no larger than C30 with a water/cement ratio of 0.60 and 0.49, the amount of large particle natural aggregate should be no more than 30%; when the RAC was no less than C40 with a water/cement ratio of 0.41 and 0.36, the amount of large particle natural aggregate should be no less than 50%. Along with the general prediction of the strength development of all the tested RAC, the optimal predictive formulas are proposed for the strength development of RAC with a rational amount of natural aggregate. Meanwhile, the strength developments of RAC with a rational amount of natural aggregate are assessed by the time-dependent models proposed by the ACI Committee 209 and CEB-FIP MC 2010.


2013 ◽  
Vol 671-674 ◽  
pp. 1918-1922
Author(s):  
Yi Zhou Zhuang ◽  
Er Bu Tian ◽  
Yue Zong Lian

Generally the high density in high-strength concrete results in high strength, and so people often mix superplasticizer and particulate to increase the density of concrete, but ignoring the effect of coarse aggregate gradation on concrete strength. Referring to several Gradation Theories, this paper selects the coarse aggregate gradation with skeleton, uses uniform design method to test the compressive strength of high-strength concrete, and analyses the test results. It can be known from the test results of 7d and 28d concrete specimen that the concrete strength decreases linearly with water-cement ratio and sand ratio; The 7d’s concrete strength has higher variability due to low water-cement ratio with superplasticizer; The coarse aggregate skeleton is interfered by the increase of steel slag and sand rate, and the concrete strength decreases with limited cement paste. Furthermore, the steel slag with less than 30% addition has little effect on concrete strength and it can increase the cement’s possibility of contacting to water, and reduce the amount of cement without lowering the concrete strength. The influential degree on the compressive strength of concrete is followed by ascending sequence of steel slag content, sand ratio and water-cement.


2008 ◽  
Vol 385-387 ◽  
pp. 381-384 ◽  
Author(s):  
Wei Wang ◽  
Hua Ling ◽  
Xiao Ni Wang ◽  
Tian Xia ◽  
Da Zhi Wang ◽  
...  

With the increase in the use of recycled aggregate concrete (RAC), it is necessary to clearly understand its behavior and characteristics. In this paper, experimental study on compressive strength of RAC with same water/cement ratio is conducted. Firstly, influence of recycled coarse aggregate contents on cube compressive strength of RAC is studied. Secondly, experiment on time-dependent strength developing process of RAC is conducted with different solidification ages. Finally, based on above experimental investigations, empirical formula for compress strengths of RAC with different ages is presented. The result of this paper is helpful to theoretical analysis and practical engineering design of RAC structures.


2018 ◽  
Vol 8 (8) ◽  
pp. 1324 ◽  
Author(s):  
How-Ji Chen ◽  
Chung-Hao Wu

Expanded shale lightweight aggregates, as the coarse aggregates, were used to produce lightweight aggregate concrete (LWAC) in this research. At the fixed water-cement ratio, paste quantity, and aggregate volume, the effects of various aggregate gradations on the engineering properties of LWAC were investigated. Comparisons to normal-weight concrete (NWC) made under the same conditions were carried out. From the experimental results, using normal weight aggregates that follow the specification requirements (standard gradation) obtained similar NWC compressive strength to that using uniform-sized aggregates. However, the compressive strength of LWAC made using small uniform-sized aggregates was superior to that made from standard-grade aggregates. This is especially conspicuous under the low water-cement ratio. Even though the workability was affected, this problem could be overcome with developed chemical additive technology. The durability properties of concrete were approximately equal. Therefore, it is suggested that the aggregate gradation requirement of LWAC should be distinct from that of NWC. In high strength LWAC proportioning, following the standard gradation suggested by American Society for Testing and Materials (ASTM) is optional.


Sign in / Sign up

Export Citation Format

Share Document