scholarly journals Traditional Water Conservation Techniques in India

Author(s):  
Samiksha Verma

Abstract: Water conservation is a practice needed for survival. In India, various techniques are used to save water, which are practical and climate-responsive. From the age of the Indus valley civilization, till today many practices are seen in different parts of India. The traditional practices used for conserving water and even cooling buildings in ancient times. Forts surrounded water bodies for protection from enemies. Indians continue to build structures to catch and store the monsoon rains. Some unique water conservation techniques are still practiced in India and are efficient. These are sometimes better than the presentday water-saving techniques. The paper summarizes the transformation over the years in the construction and advancements of water conservation practices in India. In dry regions, these practices have helped people survive tough times. Keywords: Rain water harvesting, Storage, Tanks, Traditional methods, Water conservation

2013 ◽  
Vol 1 (2) ◽  
pp. 87-91 ◽  
Author(s):  
Anadi Gayen ◽  
A Zaman

Groundwater occurring in the shallow aquifers is highly saline and is not suitable for drinking. Fresh potable ground water is occurring at great depth (245–325 m bgl). Occurrence of fresh ground water at deeper aquifers restricts large scale groundwater development, because it is beyond the economic capacity of common people. Source of drinking water is mainly Government owned hand pump fitted tube wells. Approximately per 70 households only one such tube well has been allocated. Many of these tube wells are yielding very less quantity of water during peak summer. Hence, the island is suffering from potable water scarcity especially during summer for around 4-5 months. Water supply is available in very few villages. Almost all the households are having one or two ponds. Most of the ponds are dried up during summer. Therefore, people in the island are facing water shortage round the year. The island receives very good precipitation (1900 mm) during monsoon. Major quantum of rainfall is lost as surface run-off to the sea or rivers. If this rain water run-off can be arrested and stored, island may be developed in many ways. There is a vast scope of Rain Water Harvesting (RWH) in Sagar Island. Water conservation can help to minimize the huge monsoon run-off. Roof top rain water harvesting can solve the drinking and domestic needs of the people of Sagar Island. In this context, harvesting and conservation of roof top rainwater during monsoon in storage tanks and ponds were explored, so that the same can be utilized in the lean periods. Present study has aimed to understand total amount of water may likely to be available from the concrete roofs of different existing buildings like public offices, schools, guest houses and individual houses as well as household ponds. At present, total water requirement of Sagar island in peak summer (4-5 months) for drinking and domestic uses is around 1589947.50 cu. m. Total amount of rain water be conserved through small household ponds (12418) and concrete roof tops (3194) is 3692853 cu. m. of which ponds contribute 3588976 cu. m. water and concrete roof tops used to contribute 10,38,77 cu. m. water. Thus, this conserved rain water could able to benefit in catering 492380 people (i.e., more than double of present population) of Sagar Island for five months in peak summer for drinking and domestic uses.


2010 ◽  
Vol 11 (2) ◽  
pp. 29
Author(s):  
Budi Harsoyo

Jakarta sebagai kota metropolitan memiliki masalah yang kompleks yang berhubungan dengan masalah krisis sumber daya air. Teknik pemanenan air hujan telah menjadi bagian penting dalam agenda pengelolaan sumber daya air dalam rangka untuk mengatasi ketimpangan air pada kurangnya hujan dan kekeringan (kekurangan air), pasokan air bersih masyarakat dunia, serta penanggulangan banjir dan kekeringan. Tulisan ini mencoba untuk menganalisis induksi deskriptif terkait dengan tema teknik pemanenan air hujan, dimulai dengan deskripsi dari pandangan terbuka dan data yang dikumpulkan dari literatur yang berkaitan dengan tema dan isu-isu sumber daya air di wilayah Jakarta, kemudian dilakukan analisis lebih lanjut dan kesimpulan yang diambil adalah terkait dengan aspek konservasi air dan pengelolaan sumber daya air krisis di DKI Jakarta.Jakarta as a metropolitan city has many complex issues related to the problem of waterresources crisis. Rain water harvesting techniques has become an important part in the global environmental agenda water resources management in order to overcome inequality of water in the rainy and dry (lack of water), lack of clean water supply community world, as well as flood prevention and drought. This paper tries to analyze the descriptive induction related to the theme of rain water harvesting techniques, starting with a description of the open view and the data was collected from literatures relating to the themes and issues of water resources in Jakarta area , then conducted further analysis and conclusions drawn are associated with the aspect of water conservation and water resources crisis management in DKI Jakarta.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 342 ◽  
Author(s):  
Floris Loys Naus ◽  
Kennard Burer ◽  
Frank van Laerhoven ◽  
Jasper Griffioen ◽  
Kazi Matin Ahmed ◽  
...  

The acceptance of newly implemented, safe drinking water options is not guaranteed. In the Khulna and Satkhira districts, Bangladesh, pond water is pathogen-contaminated, while groundwater from shallow tubewells may be arsenic- or saline-contaminated. This study aims to determine why, as well as the extent to which, people are expected to remain attached to using these unsafe water options, compared to the following four safer drinking water options: deep tubewells, pond sand filters, vendor water, and rainwater harvesting. Through 262 surveys, this study explores whether five explanatory factors (risk, attitude, norms, reliability, and habit) pose barriers to switching from unsafe to safe drinking water options or whether they could act as facilitators of such a switch. Users’ attachment to using pond water is generally low (facilitators: risk and attitude. Barrier: norms). Users are more attached to shallow tubewells (no facilitators. Barriers: reliability and habit). The safe alternatives (deep tubewell, rain water harvesting, pond sand filter, and vendor water) score significantly better than pond water and are estimated to have the potential to be adopted by pond water users. Deep tubewell, rain water harvesting, and pond sand filter also score better than shallow tubewells and could also have the potential to replace them. These findings may be used to optimise implementation strategies for safer drinking water alternatives.


Author(s):  
Dipak b pawar ◽  
Prashant narote ◽  
Ganesh pawar ◽  
Tushar narote ◽  
Tejas Mhaske ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document