scholarly journals HEAVY METAL CONTAMINATION OF SOILS IN THE NALAIKH REGION (MONGOLIA)

Author(s):  
B. Jargalsaihan ◽  

The content of heavy metals in soils of the Nalaikh region, in which coal was mined for a long period, was investigated. The purpose of the work was to assess the possibility of ecological safe renovation of this territory. According to the results obtained, the level of contamination of most areas of the Nalaikh region with heavy metals is insignificant and cannot pose a threat to human health.

Author(s):  
Diana FLORESCU ◽  
Andreea IORDACHE ◽  
Claudia SANDRU ◽  
Elena HORJ ◽  
Roxana IONETE ◽  
...  

As a result of accidental spills or leaks, industrial wastes may enter in soil and in streams. Some of the contaminants may not be completely removed by treatment processes; therefore, they could become a problem for these sources. The use of synthetic products (e.g. pesticides, paints, batteries, industrial waste, and land application of industrial or domestic sludge) can result in heavy metal contamination of soils.


2018 ◽  
Vol 22 (03) ◽  
pp. 140-144
Author(s):  
Minjmaa B ◽  
Oyunchimeg T

The aim of the study was to determine the source for contents of heavy metals in soils of landfill sites in Ulaanbaatar. Samples were collected from ash of the burned waste near the landfill sites to identify content of heavy metals such as plumbum, chromium, cadmium, nickel and zinc. There are total of 300 mg/kg chromium and 700 mg/kg zinc identified from ash of burned electrical wire, 1000 mg/kg plumbum is identified from the ash of burned tires. According to the comparison of heavy metal contents in landfill sites, landfill of industrial waste has higher content rate of chromium and cadmium than other landfill sites. These open burnings and industrial waste have considerable influences on contaminated soil with heavy metals. This is not only a source for soil contamination but also a risk to air and water pollution or resident health. Therefore, it is indispensable to develop waste management for human health and environmental protection.


2021 ◽  
Vol 14 (1) ◽  
pp. 161
Author(s):  
Naveed Munir ◽  
Muhammad Jahangeer ◽  
Abdelhakim Bouyahya ◽  
Nasreddine El Omari ◽  
Rokia Ghchime ◽  
...  

Heavy metals play an important role in the homeostasis of living cells. However, these elements induce several adverse environmental effects and toxicities, and therefore seriously affect living cells and organisms. In recent years, some heavy metal pollutants have been reported to cause harmful effects on crop quality, and thus affect both food security and human health. For example, chromium, cadmium, copper, lead, and mercury were detected in natural foods. Evidence suggests that these elements are environmental contaminants in natural foods. Consequently, this review highlights the risks of heavy metal contamination of the soil and food crops, and their impact on human health. The data were retrieved from different databases such as Science Direct, PubMed, Google scholar, and the Directory of Open Access Journals. Results show that vegetable and fruit crops grown in polluted soil accumulate higher levels of heavy metals than crops grown in unpolluted soil. Moreover, heavy metals in water, air, and soil can reduce the benefits of eating fruits and vegetables. A healthy diet requires a rational consumption of foods. Physical, chemical, and biological processes have been developed to reduce heavy metal concentration and bioavailability to reduce heavy metal aggregation in the ecosystem. However, mechanisms by which these heavy metals exhibit their action on human health are not well elucidated. In addition, the positive and negative effects of heavy metals are not very well established, suggesting the need for further investigation.


2021 ◽  
Vol 873 ◽  
pp. 19-24
Author(s):  
Huu Quang Le ◽  
Dung Duc Tran ◽  
Yi Ching Chen ◽  
Au Hai Nguyen ◽  
Lan Huong Nguyen

Environmental pollution due to heavy metals is a matter of great concern to many scientists and managers worldwide. The threats to human health from heavy metals are primarily associated with the exposure in agriculture production activities. However, a considerable number of technological methods have been used to remove the heavy metals from polluted soils. One of the simplest measures to effectively remove heavy metal contamination is to use both plants and microorganisms, which have been considered "natural materials" or "Bio-Materials" to treat pollutants. This study was conducted on assessing the ability of Trichoderma to absorb heavy metals into the plant. Phytoremediation experiments with Trichoderma were used to remove heavy metals in the soil. Our findings showed that Dracaena Fragrans plants are capable of absorbing heavy metals Cu, Pb, and Zn in soil contaminated with experimental heavy metals.


2014 ◽  
Vol 2014 ◽  
pp. 1-29 ◽  
Author(s):  
Amir Waseem ◽  
Jahanzaib Arshad ◽  
Farhat Iqbal ◽  
Ashif Sajjad ◽  
Zahid Mehmood ◽  
...  

Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.


Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


Author(s):  
Made Rahayu Kusumadewi ◽  
I Wayan Budiarsa Suyasa ◽  
I Ketut Berata

Tukad Badung River is one of the potential contamination of heavy metal sare very highin the city of Denpasar. Tilapia (Oreochromis mossambicus) isa commonspecies of fish found in the river and became the object of fishing by the public. The fish is usually consume das a food ingredient forever yangler. Fish can be used as bio-indicators of chemical contamination in the aquatic environment. Determination of heavy metal bioconcentration and analysis of liver histopathology gills organs and muscles is performed to determine the content of heavy metals Pb, Cd, and Cr+6, and the influence of heavy metal exposure to changes in organ histopathology Tilapia that live in Tukad Badung. In this observational study examined the levels of heavy metal contamination include Pb, Cd and Cr+6 in Tilapia meat with AAS method (Atomic Absorption Spectrofotometric), and observe the histopathological changes in organ preparations gills, liver, and muscle were stained with HE staining (hematoxylin eosin). Low Pb content of the fish that live in Tukad Badung 0.8385 mg/kg and high of 20.2600 mg/kg. The content of heavy metals Pb is above the quality standards specified in ISO 7378 : 2009 in the amount of 0.3 mg / kg. The content of Cr+6 low of 1.1402 mg / kg and the highest Cr+6 is 6.2214 mg / kg. The content of Cr+6 is above the quality standards established in the FAO Fish Circular 764 is equal to 1.0 mg / kg. In fish with Pb bioconcentration of 0.8385 mg / kg and Cr+6 of 1.1402 mg / kg was found that histopathological changes gill hyperplasia and fusion, the liver was found degeneration, necrosis, and fibrosis, and in muscle atrophy found. Histopathologicalchangessuch asedema and necrosis ofthe liveris foundin fishwith Pb bioconcentration of 4.5225mg/kg and Cr+6 amounted to2.5163mg/kg. Bio concentration of heavy metal contamination of lead (Pb) and hexavalent chromium (Cr+6) on Tilapia ( Oreochromis mossambicus ) who lives in Tukad Badung river waters exceed the applicable standard. Histopathological changes occur in organs gills, liver, and muscle as a result of exposure to heavy metals lead and hexavalent chromium. Advised the people not to eat Tilapia that live in Tukad Badung


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3348
Author(s):  
Min Tan ◽  
Kun Wang ◽  
Zhou Xu ◽  
Hanghe Li ◽  
Junfeng Qu

Heavy metals accumulate in high water table coal mining subsidence ponds, resulting in heavy metal enrichment and destruction of the ecological environment. In this study, subsidence ponds with different resource reutilization methods were used as study subjects, and non-remediated subsidence ponds were collectively used as the control region to analyze the heavy metal distributions in water bodies, sediment, and vegetation. The results revealed the arsenic content in the water bodies slightly exceeded Class III of China’s Environmental Quality Standards for Surface Water. The lead content in water inlet vegetation of the control region and the Anguo wetland severely exceeded limits. Pearson’s correlation, PCA, and HCA analysis results indicated that the heavy metals at the study site could be divided into two categories: Category 1 is the most prevalent in aquaculture pond B and mainly originate from aquaculture. Category 2 predominates in control region D and mainly originates from atmospheric deposition, coal mining, and leaching. In general, the degree of heavy metal contamination in the Anguo wetland, aquaculture pond, and fishery–solar hybrid project regions is lower than that in the control region. Therefore, these models should be considered during resource reutilization of subsidence ponds based on the actual conditions.


2014 ◽  
Vol 23 (3) ◽  
pp. 213-219 ◽  
Author(s):  
Moulay Laârabi El Hachimi ◽  
Mohamed Fekhaoui ◽  
Abdellah El Abidi ◽  
Ali Rhoujatti

Sign in / Sign up

Export Citation Format

Share Document