scholarly journals Family-Aware Convolutional Neural Network for Image-based Kinship Verification

Author(s):  
Reza Rachmadi ◽  
◽  
I Purnama ◽  
Supeno Nugroho ◽  
Yoyon Suprapto ◽  
...  

Faces is a unique region in our body that can be used as a biometric identity. Furthermore, the face between two people that have a kinship relationship may share the same face features which can be used to decide whether two people have a kinship relationship or not. In this paper, we proposed a family-aware convolutional neural network (CNN) for the visual kinship verification problem. Our proposed classifier is constructed by paralleling the state-of-the-art face recognition model and attaching two additional networks, a family-aware network, and a kinship verification network. The family-aware network weights adjusted by learning features specific to the family using deep metric learning loss while the kinship verification network use softmax loss to learn the kinship verification problem. One of the advantages of our proposed classifier is that the output of the classifier is normalized and can be represented as the probability of two images being kin or non-kin. To preserve the face recognition features extraction ability in the state-of-the-art face recognition model, we freeze the weights of the convolutional layers in the classifier for the training process. In the testing process, the family-aware network is detached to construct the final classifier. Experiments on FIW (Families In the Wild) dataset show that our proposed classifier performs better comparing with classifiers that trained without a family-aware network and the ensemble version of the classifier is comparable with several state-of-the-art methods with an average accuracy of 68.84%.

2021 ◽  
Author(s):  
Muhammad Shahroz Nadeem ◽  
Sibt Hussain ◽  
Fatih Kurugollu

This paper solves the textual deblurring problem, In this paper we propose a new loss function, we provide empirical evaluation of the design choices based on which a memory friendly CNN model is proposed, that performs better then the state of the art CNN method.


Author(s):  
Zhixian Chen ◽  
Jialin Tang ◽  
Xueyuan Gong ◽  
Qinglang Su

In order to improve the low accuracy of the face recognition methods in the case of e-health, this paper proposed a novel face recognition approach, which is based on convolutional neural network (CNN). In detail, through resolving the convolutional kernel, rectified linear unit (ReLU) activation function, dropout, and batch normalization, this novel approach reduces the number of parameters of the CNN model, improves the non-linearity of the CNN model, and alleviates overfitting of the CNN model. In these ways, the accuracy of face recognition is increased. In the experiments, the proposed approach is compared with principal component analysis (PCA) and support vector machine (SVM) on ORL, Cohn-Kanade, and extended Yale-B face recognition data set, and it proves that this approach is promising.


Author(s):  
Jianwen Jiang ◽  
Di Bao ◽  
Ziqiang Chen ◽  
Xibin Zhao ◽  
Yue Gao

3D shape retrieval has attracted much attention and become a hot topic in computer vision field recently.With the development of deep learning, 3D shape retrieval has also made great progress and many view-based methods have been introduced in recent years. However, how to represent 3D shapes better is still a challenging problem. At the same time, the intrinsic hierarchical associations among views still have not been well utilized. In order to tackle these problems, in this paper, we propose a multi-loop-view convolutional neural network (MLVCNN) framework for 3D shape retrieval. In this method, multiple groups of views are extracted from different loop directions first. Given these multiple loop views, the proposed MLVCNN framework introduces a hierarchical view-loop-shape architecture, i.e., the view level, the loop level, and the shape level, to conduct 3D shape representation from different scales. In the view-level, a convolutional neural network is first trained to extract view features. Then, the proposed Loop Normalization and LSTM are utilized for each loop of view to generate the loop-level features, which considering the intrinsic associations of the different views in the same loop. Finally, all the loop-level descriptors are combined into a shape-level descriptor for 3D shape representation, which is used for 3D shape retrieval. Our proposed method has been evaluated on the public 3D shape benchmark, i.e., ModelNet40. Experiments and comparisons with the state-of-the-art methods show that the proposed MLVCNN method can achieve significant performance improvement on 3D shape retrieval tasks. Our MLVCNN outperforms the state-of-the-art methods by the mAP of 4.84% in 3D shape retrieval task. We have also evaluated the performance of the proposed method on the 3D shape classification task where MLVCNN also achieves superior performance compared with recent methods.


2020 ◽  
Vol 10 (2) ◽  
pp. 84 ◽  
Author(s):  
Atif Mehmood ◽  
Muazzam Maqsood ◽  
Muzaffar Bashir ◽  
Yang Shuyuan

Alzheimer’s disease (AD) may cause damage to the memory cells permanently, which results in the form of dementia. The diagnosis of Alzheimer’s disease at an early stage is a problematic task for researchers. For this, machine learning and deep convolutional neural network (CNN) based approaches are readily available to solve various problems related to brain image data analysis. In clinical research, magnetic resonance imaging (MRI) is used to diagnose AD. For accurate classification of dementia stages, we need highly discriminative features obtained from MRI images. Recently advanced deep CNN-based models successfully proved their accuracy. However, due to a smaller number of image samples available in the datasets, there exist problems of over-fitting hindering the performance of deep learning approaches. In this research, we developed a Siamese convolutional neural network (SCNN) model inspired by VGG-16 (also called Oxford Net) to classify dementia stages. In our approach, we extend the insufficient and imbalanced data by using augmentation approaches. Experiments are performed on a publicly available dataset open access series of imaging studies (OASIS), by using the proposed approach, an excellent test accuracy of 99.05% is achieved for the classification of dementia stages. We compared our model with the state-of-the-art models and discovered that the proposed model outperformed the state-of-the-art models in terms of performance, efficiency, and accuracy.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Ahmed Jawad A. AlBdairi ◽  
Zhu Xiao ◽  
Mohammed Alghaili

The interest in face recognition studies has grown rapidly in the last decade. One of the most important problems in face recognition is the identification of ethnics of people. In this study, a new deep learning convolutional neural network is designed to create a new model that can recognize the ethnics of people through their facial features. The new dataset for ethnics of people consists of 3141 images collected from three different nationalities. To the best of our knowledge, this is the first image dataset collected for the ethnics of people and that dataset will be available for the research community. The new model was compared with two state-of-the-art models, VGG and Inception V3, and the validation accuracy was calculated for each convolutional neural network. The generated models have been tested through several images of people, and the results show that the best performance was achieved by our model with a verification accuracy of 96.9%.


2020 ◽  
Vol 32 ◽  
pp. 03011
Author(s):  
Divya Kapil ◽  
Aishwarya Kamtam ◽  
Akhil Kedare ◽  
Smita Bharne

Surveillance systems are used for the monitoring the activities directly or indirectly. Most of the surveillance system uses the face recognition techniques to monitor the activities. This system builds the automated contemporary biometric surveillance system based on deep learning. The application of the system can be used in various ways. The face prints of the persons will be stored inside the database with relevant statistics and does the face recognition. When any unknown face is recognized then alarm will ring so one can alert the security systems and in addition actions will be taken. The system learns changes while detecting faces automatically using deep learning and gain correct accuracy in face recognition. A deep learning method including Convolutional Neural Network (CNN) is having great significance in the area of image processing. This system can be applicable to monitor the activities for the housing society premises.


Author(s):  
Shifeng Shang ◽  
Haiyan Liu ◽  
Qiang Qu ◽  
Guannan Li ◽  
Jie Cao

Author(s):  
AprilPyone Maungmaung ◽  
Hitoshi Kiya

In this paper, we propose a novel method for protecting convolutional neural network models with a secret key set so that unauthorized users without the correct key set cannot access trained models. The method enables us to protect not only from copyright infringement but also the functionality of a model from unauthorized access without any noticeable overhead. We introduce three block-wise transformations with a secret key set to generate learnable transformed images: pixel shuffling, negative/positive transformation, and format-preserving Feistel-based encryption. Protected models are trained by using transformed images. The results of experiments with the CIFAR and ImageNet datasets show that the performance of a protected model was close to that of non-protected models when the key set was correct, while the accuracy severely dropped when an incorrect key set was given. The protected model was also demonstrated to be robust against various attacks. Compared with the state-of-the-art model protection with passports, the proposed method does not have any additional layers in the network, and therefore, there is no overhead during training and inference processes.


Author(s):  
Mochammad Langgeng Prasetyo ◽  
Achmad Teguh Wibowo ◽  
Mujib Ridwan ◽  
Mohammad Khusnu Milad ◽  
Sirajul Arifin ◽  
...  

The implementation of face recognition technique using CCTV is able to prevent unauthorized person enter the gate. Face recognition can be used for authentication, which can be implemented for preventing of criminal incidents. This re-search proposed a face recognition system using convolutional neural network to open and close the real-time barrier gate. The process consists of a convolutional layer, pooling layer, max pooling, flattening, and fully connected layer for detecting a face. The information was sent to the microcontroller using Internet of Thing (IoT) for controlling the barrier gate. The face recognition results are used to open or close the gate in the real time. The experimental results obtained average error rate of 0.320 and the accuracy of success rate is about 93.3%. The average response time required by microcontroller is about 0.562ms. The simulation result show that the face recognition technique using CNN is highly recommended to be implemented in barrier gate system.


Sign in / Sign up

Export Citation Format

Share Document