scholarly journals Formulation and Characterization of Cefixime Phytosomes for Oral Drug Delivery

1970 ◽  
Vol 7 (5) ◽  
pp. 65-73
Author(s):  
Saloni Jain ◽  
Rahul Ancheriya ◽  
S Srivastva ◽  
Shankar Lal Soni ◽  
Mukesh Sharma

Novel drug delivery systems (NDDS) are one of the most strategies which enable to overcome the problems related to drug bioavailability. It is the rate and extent to which a drug becomes available to the target tissue after its administration. Over the last century, phyto-chemical science and phyto-pharmacological science established numerous plant compounds with various biological activities and health promoting benefits such as anti-mutagenicity, anti-carcinogenicity and anti-oxidative activity, for age-related diseases namely memory loss, osteoporosis, diabetic wounds, immune and liver disorders, etc. Herbal medicines have been known since eons for their safety, efficacy, folk acceptability and fewer side effects.  

2021 ◽  
Vol 11 (2-S) ◽  
pp. 156-161
Author(s):  
Hans Raj ◽  
Shagun Sharma ◽  
Ankita Sharma ◽  
Kapil Kumar Verma ◽  
Amit Chaudhary

Microspheres are multiparticulate drug delivery systems that are designed to deliver drugs to a particular location at a fixed rate. Microspheres are free-flowing powders made up of biodegradable proteins or synthetic polymers with particle sizes ranging from 1 to 1000µm. Benefits of the use of microspheres in fields such as drug delivery, bone tissue manufacturing, and the absorption and desorption of contaminants by regeneration. The study shows the method of planning and measurement of microsphere parameters. Microspheres are complex, such as bioadhesive microspheres, polymeric microspheres, magnetic microspheres, floating microspheres, radioactive microspheres. Microspheres may be used in various fields such as cosmetics, oral drug delivery, target drug delivery, ophthalmic drug delivery, gene delivery, and others listed in the study. In order to achieve optimal therapeutic effectiveness, it is important to deliver the agent to the target tissue at an optimum level within the right timeframe, resulting in little toxicity and minimal side effects. There are different approaches to supplying the medicinal drug to the target site in a continuous managed manner. One such strategy is the use of microspheres as drug carriers. In this article, the value of the microsphere is seen as a novel drug delivery carrier to achieve site-specific drug delivery was discussed. Keywords: microspheres, method of preparations, polymer, bioadhesion, types of microspheres


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammed S. Alqahtani ◽  
Mohsin Kazi ◽  
Mohammad A. Alsenaidy ◽  
Muhammad Z. Ahmad

The oral route is the most common route for drug administration. It is the most preferred route, due to its advantages, such as non-invasiveness, patient compliance and convenience of drug administration. Various factors govern oral drug absorption including drug solubility, mucosal permeability, and stability in the gastrointestinal tract environment. Attempts to overcome these factors have focused on understanding the physicochemical, biochemical, metabolic and biological barriers which limit the overall drug bioavailability. Different pharmaceutical technologies and drug delivery systems including nanocarriers, micelles, cyclodextrins and lipid-based carriers have been explored to enhance oral drug absorption. To this end, this review will discuss the physiological, and pharmaceutical barriers influencing drug bioavailability for the oral route of administration, as well as the conventional and novel drug delivery strategies. The challenges and development aspects of pediatric formulations will also be addressed.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1261
Author(s):  
Rui Xue Zhang ◽  
Ken Dong ◽  
Zhigao Wang ◽  
Ruimin Miao ◽  
Weijia Lu ◽  
...  

Drug dosing in clinical practice, which determines optimal efficacy, toxicity or ineffectiveness, is critical to patients’ outcomes. However, many orally administered therapeutic drugs are susceptible to biotransformation by a group of important oxidative enzymes, known as cytochrome P450s (CYPs). In particular, CYP3A4 is a low specificity isoenzyme of the CYPs family, which contributes to the metabolism of approximately 50% of all marketed drugs. Induction or inhibition of CYP3A4 activity results in the varied oral bioavailability and unwanted drug-drug, drug-food, and drug-herb interactions. This review explores the need for addressing intestinal CYP3A4 metabolism and investigates the opportunities to incorporate lipid-based oral drug delivery to enable precise dosing. A variety of lipid- and lipid-polymer hybrid-nanoparticles are highlighted to improve drug bioavailability. These drug carriers are designed to target different intestinal regions, including (1) local saturation or inhibition of CYP3A4 activity at duodenum and proximal jejunum; (2) CYP3A4 bypass via lymphatic absorption; (3) pH-responsive drug release or vitamin-B12 targeted cellular uptake in the distal intestine. Exploitation of lipidic nanosystems not only revives drugs removed from clinical practice due to serious drug-drug interactions, but also provide alternative approaches to reduce pharmacokinetic variability.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 887
Author(s):  
Nutthapoom Pathomthongtaweechai ◽  
Chatchai Muanprasat

The small intestine provides the major site for the absorption of numerous orally administered drugs. However, before reaching to the systemic circulation to exert beneficial pharmacological activities, the oral drug delivery is hindered by poor absorption/metabolic instability of the drugs in gastrointestinal (GI) tract and the presence of the mucus layer overlying intestinal epithelium. Therefore, a polymeric drug delivery system has emerged as a robust approach to enhance oral drug bioavailability and intestinal drug absorption. Chitosan, a cationic polymer derived from chitin, and its derivatives have received remarkable attention to serve as a promising drug carrier, chiefly owing to their versatile, biocompatible, biodegradable, and non-toxic properties. Several types of chitosan-based drug delivery systems have been developed, including chemical modification, conjugates, capsules, and hybrids. They have been shown to be effective in improving intestinal assimilation of several types of drugs, e.g., antidiabetic, anticancer, antimicrobial, and anti-inflammatory drugs. In this review, the physiological challenges affecting intestinal drug absorption and the effects of chitosan on those parameters impacting on oral bioavailability are summarized. More appreciably, types of chitosan-based nanomaterials enhancing intestinal drug absorption and their mechanisms, as well as potential applications in diabetes, cancers, infections, and inflammation, are highlighted. The future perspective of chitosan applications is also discussed.


2014 ◽  
Vol 2 (02) ◽  
pp. 130-143 ◽  
Author(s):  
Hema Jaiswal

Over the recent past, many of the research groups are focusing their research on this technology. Amongst Oral drug delivery system Oral Strip Technology (OST) is gaining much attention. The advantages of OST are the administration to pediatric and geriatric patient population where the difficulty of swallowing larger oral dosage forms is eliminated. This technology has been used for local action, rapid release products and for buccoadhesive systems that are retained in the oral cavity to release drug in controlled fashion. OST offers an alternate platform for molecules that undergo first pass metabolism and for delivery of peptides. An ideal OST should have the following properties: high stability, transportability, ease of handling and administration, no special packaging material and/or processing requirements, no water necessary for application, and a pleasant taste. All these requirement are fulfilled by the oral films. The OST is a good tool for product life cycle management for increasing the patent life of existing molecules or products. Compared to some of the complicated and expensive process (like lyophilization) used to manufacture ODTs(Orally Disintegrating Tablets), the OST is relatively easy to fabricate,thus reducing the overall cost of the therapy. One of the reasons is that the buccal mucosa is less permeable and is thus not able to elicit a rapid onset of absorption and hence better suited for formulations that are intended for sustained release action. Further, the buccal mucosa being relatively immobile mucosa and readily accessible, it makes it more advantageous for retentive systems used for oral trans mucosal drug delivery. The primary disadvantage associated with buccal delivery route is the low flux that in turn results in low drug bioavailability. To overcome this hurdle, various buccal penetration enhancers have been studied which improve the absorption pattern of the molecules. The article shows OST encompassing materials used in OST, method of preparation, evaluation, applications, commercial technologies and future Business prospects of this technology.


Author(s):  
Kathpalia Harsha ◽  
Das Sukanya

Ion Exchange Resins (IER) are insoluble polymers having styrene divinylbenzene copolymer backbone that contain acidic or basic functional groups and have the ability to exchange counter ions with the surrounding aqueous solutions. From the past many years they have been widely used for purification and softening of water and in chromatographic columns, however recently their use in pharmaceutical industry has gained considerable importance. Due to the physical stability and inert nature of the resins, they can be used as a versatile vehicle to design several modified release dosage forms The ionizable drug is complexed with the resin owing to the property of ion exchange. This resin complex dissociatesin vivo to release the drug. Based on the dissociation strength of the drug from the drug resin complex, various release patterns can be achieved. Many formulation glitches can be circumvented using ion exchange resins such as bitter taste and deliquescence. These resins also aid in enhancing disintegrationand stability of formulation. This review focuses on different types of ion exchange resins, their preparation methods, chemistry, properties, incompatibilities and their application in various oral drug delivery systems as well as highlighting their use as therapeutic agents.


2015 ◽  
Vol 21 (15) ◽  
pp. 2021-2036 ◽  
Author(s):  
Himani Kapahi ◽  
Nikhat Khan ◽  
Ankur Bhardwaj ◽  
Neeraj Mishra

2012 ◽  
Vol 9 (2) ◽  
pp. 213-217 ◽  
Author(s):  
Mehdi Rahimi ◽  
Hamid Mobedi ◽  
Aliasghar Behnamghader ◽  
Alireza Nateghi Baygi ◽  
Houri Mivehchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document