scholarly journals Formulation, characterization and evaluation of Tramadol Hydrochloride Hydrogel

2020 ◽  
Vol 10 (5-s) ◽  
pp. 177-185
Author(s):  
Vipin Kumar ◽  
Kapil Malviya ◽  
Lavakesh Kumar Omray

The challenge in the formulation of novel systems for TDDS is to identify technologies and formulation excipients which simultaneously optimize drug permeation. Our main goal was to design and evaluate a recent alternative for the administration of tramadol HCl. Performed the preformulation study as different evaluation parameters Physiochemical Studies, Solubility Determination, Partition Coefficient, and Preparation of Calibration Curve simultaneously Preparation & Characterization of Hydrogel Formulation Homogeneity, pH Measurement, Drug Content, Viscosity, Spreadability, In-Vitro Permeation, FT-IR Studies. Results revealed that the present investigation, tramadol was successfully incorporated into different gel formulations. Among all gel formulations, tramadol gel (F13) proved to be the formula of choice, showing good characteristics and controlling the drug release for long period of time. Gel formulation F13 could be very promising and innovative topical alternative for pain management and arthritis and play a vital role in drug efficiency. These findings may open new avenues for the treatment through dermal by local application of tailored gel. However, further preclinical and clinical studies are recommended to support its efficiency claims in humans. Keywords: Tramadol HCl; In-Vitro Permeation; Hydrogel; FT-IR Studies; Characterization

2015 ◽  
Vol 13 (1) ◽  
pp. 75-81 ◽  
Author(s):  
KR Naga Priya ◽  
Sayani Bhattacharyya ◽  
P Ramesh Babu

The present work focuses on formulation of erodible ocular films of valacyclovir hydrochloride (VH) for the treatment of ocular herpes to enhance therapeutic effect through prolonging contact time with the corneal surface. Nine films were prepared by solvent casting method using different ratios of polymers HPMC E 15 LV and PVP. The FT-IR studies showed no interaction between drug and the polymers. Developed formulations were evaluated for tensile strength, % elongation at break, strain, folding endurance, uniformity of thickness, weight variation, % moisture absorption, surface pH, drug content, in vitro release, kinetics study, sterility test and eye irritancy test on Rabbit eye. On the basis of these evaluations it was found that with increase in hydrophilic polymer content the mechanical properties and release rate of the films were improved. The kinetic study revealed case II transport. The eye irritancy test showed that the films were free from ocular toxicity and irritancy. DOI: http://dx.doi.org/10.3329/dujps.v13i1.21866 Dhaka Univ. J. Pharm. Sci. 13(1): 75-81, 2014 (June)


Author(s):  
Abdul Baquee Ahmed ◽  
Gouranga Das

Objective: The aim of this investigation was to enhance the transdermal permeation of aceclofenac (ACF) from microemulsion formulation using menthol as a natural permeation enhancer. Methods: Microemulsion containing 2% w/v of ACF was prepared by a titration method with different concentration of oil, surfactant and co-surfactant. The prepared microemulsion was evaluated for droplet size, viscosity, pH and in vitro skin permeation studies. Menthol at 3-8% w/w was added to the selected microemulsion formulation and their effect on skin permeation was evaluated across rat epidermis using modified Keshary-Chien diffusion cell. The Fourier transform infrared spectroscopy (FT-IR) was performed to understand the regulation action of menthol in the skin permeability barrier. Results: The average droplet size of the microemulsion was found to be 89.4±2.12 to 175.2±3.10 nm. The transdermal flux of the microemulsion containing 8% w/w menthol showed 2.9 fold increases in transdermal flux of ACF compared with the formulation without menthol. Result of FT-IR studies showed decrease in peak height of the symmetric and asymmetric C-H stretching vibrations may be because of the extraction of the stratum corneum (SC) lipids and the alteration of the skin permeability barrier. Conclusion: This result suggests that menthol significantly enhanced the transdermal permeation of ACF and may be an effective natural penetration enhancer for transdermal delivery of the drug.


2013 ◽  
Vol 01 (01) ◽  
pp. 1-10 ◽  
Author(s):  
Omaima A. Sammour ◽  
◽  
Maha A. Marzouk ◽  
Afaf A. Ramadan ◽  
Seham M. Shawky

Author(s):  
Ruchi Tiwari ◽  
Akanksha Lahiri ◽  
Gaurav Tiwari ◽  
Ramachandran Vadivelan

The present study assessed the topical potential of nanofibers loaded with Mupirocin (MUP) for the treatment of burns. Nanofibers of MUP were composed of Polyvinyl Pyrrolidone (PVP), Gelatin Type-A, and Ethanol using two methods: Solvent casting and Electrospinning. Nanofibers were characterized for Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Drug Content Studies, in-vitro drug permeation, antibacterial and stability studies. The FT-IR studies showed that the Electrospinning technique had a very good mixing of MUP with the polymer. SEM studies showed that the morphology of electrospinning nanofibers had diameters in the range of 70.41 nm- 406.83 nm. The thermal decomposition studies of optimized Nanofiber (E.S.1) were performed by DSC and TGA study and it was found that the formulation had high stability in high-temperature environments. Permeation studies showed that E.S.1 had the highest percentage amount and controlled release of the drug (90 %) up to 8 has compared to other formulations. Nanofibers prepared through the Electrospinning technique showed better antibacterial activity against Staphylococcus aureus as compared to the Solvent casting nanofibers. This research suggested that MUP loaded nanofibers can be potentially used as a topical drug delivery system for the treatment of burns. 


2017 ◽  
Vol 1 (2) ◽  
pp. 01-04
Author(s):  
Saritha Garrepalli

Prepared nanoparticles were characterized in terms of particle size, scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). In-vitro release studies were performed in phosphate buffer saline pH 7.4 at 37˚±0.5˚C for 1month. The mean particle size of obtained nanoparticles was 150-400 nm and was apparently spherical in shape, with smooth surface. DSC is done for the stability test for pure drug and sample. The thermogram of drug has not shifted for in the formulation compare to pure drug thermogram hence, the stability of formulation is not changed. FT-IR studies demonstrated that the drug was not changed in the formulation during the fabrication process.The encapsulation efficiency was about 48%. The Anastrozole-BSA nanoparticles exhibit a most interesting release profile with small initial burst followed by slower and controlled release.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 323-328
Author(s):  
Umamaheswara Rao T ◽  
Smitha M ◽  
Maghiben M ◽  
Damodara Velayudham A

The detached of the current research progress a bilayer tablet of aceclofenac utilizing sodium starch glycolate (SSG) and croscarmellose sodium (CCS) as super disintegrants for the formulation of immediate-release layer whereas polymers such as methocel K15M, Lubrizol 971P were utilized by the formulation of sustaining layer. The tablets were equipped by straight density technique. The organized tablets were estimated for pre-compressed parameters like micromeritic properties and post compressed parameters like bulk variation, aceclofenac satisfied and in-vitro dissolution studies. The in-vitro dissolution studies showed about 86.78 % of aceclofenac release from the bilayer tablet, indicating that a preliminary burst release of aceclofenac followed by sustaining action up to 12 h by the sustained layer of the tablets. In-Vitro kinetic data revealed that all the formulations surveyed the Higuchi prototype via fickian dispersal as announcement device subsequently the preliminary rupture announcement. FT-IR studies exposed here is no communication among the drug and polymers utilized in the study. The errand of medication is to safeguard and reestablish wellbeing and to soothe languishing. In this context, the most commonly used pain-relieving agent is aceclofenac an NSAID. In the present investigation, aceclofenac bilayer tablets were prepared to provide sustain effect for better therapeutic effect. These points of interest, clarify the requirement for the planning of changed medication conveyance framework.


Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 459 ◽  
Author(s):  
Tanase ◽  
Berta ◽  
Coman ◽  
Roșca ◽  
Man ◽  
...  

Green synthesis is one of the rapid and best ways for silver nanoparticles (AgNP) synthesis. In the present study, synthesis and bioactivity of AgNPs has been demonstrated using water beech (Fagus sylvatica L.) bark extract. The physical and chemical factors such as time, metal ion solution, and pH, which play a vital role in the AgNPs synthesis, were assessed. The AgNPs were characterized by ultraviolet-visible (UV-Vis) spectrometry, Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). Antioxidant and antimicrobial activity of the obtained AgNPs was evaluated. AgNPs were characterized by color change pattern, and the broad peak obtained at 420–475 nm with UV-Vis confirmed the synthesis of AgNPs. FT-IR results confirmed that phenols and proteins of beech bark extract are mainly responsible for capping and stabilization of synthesized AgNPs. TEM micrographs showed spherical or rarely polygonal and triangular particles with an average size of 32 nm at pH = 9, and 62 nm at pH = 4. Furthermore, synthesized AgNPs were found to exhibit antioxidant activity and have antibacterial effect against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. These results indicate that bark extract of F. sylvatica L. is suitable for synthesizing stable AgNPs, which act as an excellent antimicrobial agent.


2020 ◽  
Vol 10 (2) ◽  
pp. 59-68
Author(s):  
D. Hema Naga Durga ◽  
T. Lakshmi Sowjanya ◽  
T. Pavani ◽  
Lohithasu Duppala

Colon targeted tablets were prepared in two steps. Initially core tablets were prepared and then the tablets were coated by using different pH dependent polymers. Ethyl cellulose, Eudragit L100 and S100 were used as coating polymers. FT-IR studies were carried out to find out the possible interaction between the selected drugs and polymer. FT-IR studies revealed that there  was  no  interaction between the selected drug and excipients. The pre-compression blend of all formulations was subjected to various flow property tests and all the formulations passed the tests. The tablets were coated by using polymers and the coated tablets were subjected to various evaluation techniques. The tablets passed all the tests. Among all the formulations F3 formulation was found to be optimized as it was retarded the drug release up to 12 hours and showed maximum of 97.57% drug release. It followed zero order kinetics mechanism. The ideal formulation was subjected to stability studies at 40°C/75%RH. The stability studies indicated that the formulation was stable and retained its pharmaceutical properties at 40°C/75%RH over a period of 1 month. Keywords: Colon target, Ethyl cellulose, Eudragit L100 and S100, pH dependent polymers.


Sign in / Sign up

Export Citation Format

Share Document