In-vitro Permeation and Pharmaco-dynamic Properties of Gel Formulations Containing Tenoxicam Entrapped Niosomes

2013 ◽  
Vol 01 (01) ◽  
pp. 1-10 ◽  
Author(s):  
Omaima A. Sammour ◽  
◽  
Maha A. Marzouk ◽  
Afaf A. Ramadan ◽  
Seham M. Shawky
2020 ◽  
Vol 10 (5-s) ◽  
pp. 177-185
Author(s):  
Vipin Kumar ◽  
Kapil Malviya ◽  
Lavakesh Kumar Omray

The challenge in the formulation of novel systems for TDDS is to identify technologies and formulation excipients which simultaneously optimize drug permeation. Our main goal was to design and evaluate a recent alternative for the administration of tramadol HCl. Performed the preformulation study as different evaluation parameters Physiochemical Studies, Solubility Determination, Partition Coefficient, and Preparation of Calibration Curve simultaneously Preparation & Characterization of Hydrogel Formulation Homogeneity, pH Measurement, Drug Content, Viscosity, Spreadability, In-Vitro Permeation, FT-IR Studies. Results revealed that the present investigation, tramadol was successfully incorporated into different gel formulations. Among all gel formulations, tramadol gel (F13) proved to be the formula of choice, showing good characteristics and controlling the drug release for long period of time. Gel formulation F13 could be very promising and innovative topical alternative for pain management and arthritis and play a vital role in drug efficiency. These findings may open new avenues for the treatment through dermal by local application of tailored gel. However, further preclinical and clinical studies are recommended to support its efficiency claims in humans. Keywords: Tramadol HCl; In-Vitro Permeation; Hydrogel; FT-IR Studies; Characterization


Author(s):  
Rakesh Patel ◽  
Hardik Patel ◽  
Ashok Baria

The aim of this work was to prepare and evaluate the topical carbopol gel formulation containing ketoconazole encapsulated liposomes. Ketoconazole loaded liposomes were prepared by thin film hydration technique. The prepared liposomes were incorporated into 1% carbopol gel, and the systems were evaluated for in-vitro drug release, drug retention into skin and in-vitro antifungal activity. The in-vitro permeation of ketoconazole using wistar albino rat skin from liposomal gel was compared with that of plain drug gel and also with plain drug cream containing 2% w/w of ketoconazole. The release of ketoconazole from liposomal gel was much slower than from non liposomal formulations. Gel containing liposomal ketoconazole showed maximum antifungal activity after 30 hours over plain ketoconazole gel and cream formulations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kamlesh Wadher ◽  
Shital Dabre ◽  
Anjali Gaidhane ◽  
Sagar Trivedi ◽  
Milind Umekar

Abstract Background Pongamia pinnata (Fabaceae) is among those categories of plants mentioned in Ayurveda and traditionally known to use in several types of disease and disorders. The objective of the present work was to investigate the anti-psoriatic activity of Pongamia pinnata leaves extracts in Herbal gel formulation. Results Hydroalcoholic leaves extract of Pongamia pinnata was first subjected to phytochemical screening and quantification of phytoconstituents. Herbal gel was prepared containing Pongamia pinnata extracts using Carbopol 934 as gelling agent. The prepared gel formulations were studied for pH, viscosity, Spreadability and in vitro diffusion studies. The imiquimod-induced psoriatic mouse model, showed a prominent anti-psoriatic activity of the extract as evident through index grading. Treatment with extract confirmed a noteworthy reduction in psoriasis in the treated groups as there was a considerable diminution in the thickness and scaling of skin. Conclusions Lack of proper treatment and disadvantages associated with allopathic medicines pave the way to extensive research in natural products with anti-psoriatic activity. The present research scientifically justified the anti-psoriatic activity of the Hydroalcoholic extracts of Pongamia pinnata leaves.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 335
Author(s):  
Silvia Tampucci ◽  
Antonella Castagna ◽  
Daniela Monti ◽  
Clementina Manera ◽  
Giuseppe Saccomanni ◽  
...  

Chitosan is receiving increasing attention from the food industry for being a biodegradable, non-toxic, antimicrobial biopolymer able to extend the shelf life of, and preserve the quality of, fresh food. However, few studies have investigated the ability of chitosan-based coatings to allow the diffusion of bioactive compounds into the food matrix to improve its nutraceutical quality. This research is aimed at testing whether a hydrophilic molecule (tyrosol) could diffuse from the chitosan-tyrosol coating and cross the tomato peel. To this end, in vitro permeation tests using excised tomato peel and an in vivo application of chitosan-tyrosol coating on tomato fruit, followed by tyrosol quantification in intact fruit, peel and flesh during a seven-day storage at room temperature, were performed. Both approaches demonstrated the ability of tyrosol to permeate across the fruit peel. Along with a decreased tyrosol content in the peel, its concentration within the flesh was increased, indicating an active transfer of tyrosol into this tissue. This finding, together with the maintenance of constant tyrosol levels during the seven-day storage period, is very promising for the use of chitosan formulations to produce functional tomato fruit.


2021 ◽  
Author(s):  
Zenita Adhireksan ◽  
Deepti Sharma ◽  
Phoi Leng Lee ◽  
Qiuye Bao ◽  
Sivaraman Padavattan ◽  
...  

Abstract Structural characterization of chromatin is challenging due to conformational and compositional heterogeneity in vivo and dynamic properties that limit achievable resolution in vitro. Although the maximum resolution for solving structures of large macromolecular assemblies by electron microscopy has recently undergone profound increases, X-ray crystallographic approaches may still offer advantages for certain systems. One such system is compact chromatin, wherein the crystalline state recapitulates the crowded molecular environment within the nucleus. Here we show that nucleosomal constructs with cohesive-ended DNA can be designed that assemble into different types of circular configurations or continuous fibers extending throughout crystals. We demonstrate the utility of the method for characterizing nucleosome compaction and linker histone binding at near-atomic resolution but also advance its application for tackling further problems in chromatin structural biology and for generating novel types of DNA nanostructures. We provide a library of cohesive-ended DNA fragment expression constructs and a strategy for engineering DNA-based nanomaterials with a seemingly vast potential variety of architectures and histone chemistries.


Sign in / Sign up

Export Citation Format

Share Document