scholarly journals Formulation and evaluation of erodible ocular films of Valacyclovir Hydrochloride

2015 ◽  
Vol 13 (1) ◽  
pp. 75-81 ◽  
Author(s):  
KR Naga Priya ◽  
Sayani Bhattacharyya ◽  
P Ramesh Babu

The present work focuses on formulation of erodible ocular films of valacyclovir hydrochloride (VH) for the treatment of ocular herpes to enhance therapeutic effect through prolonging contact time with the corneal surface. Nine films were prepared by solvent casting method using different ratios of polymers HPMC E 15 LV and PVP. The FT-IR studies showed no interaction between drug and the polymers. Developed formulations were evaluated for tensile strength, % elongation at break, strain, folding endurance, uniformity of thickness, weight variation, % moisture absorption, surface pH, drug content, in vitro release, kinetics study, sterility test and eye irritancy test on Rabbit eye. On the basis of these evaluations it was found that with increase in hydrophilic polymer content the mechanical properties and release rate of the films were improved. The kinetic study revealed case II transport. The eye irritancy test showed that the films were free from ocular toxicity and irritancy. DOI: http://dx.doi.org/10.3329/dujps.v13i1.21866 Dhaka Univ. J. Pharm. Sci. 13(1): 75-81, 2014 (June)

2011 ◽  
Vol 47 (3) ◽  
pp. 545-553 ◽  
Author(s):  
Sathis Kumar Dinakaran ◽  
Santhos Kumar ◽  
David Banji ◽  
Harani Avasarala ◽  
Venkateshwar Rao

The purpose of this research study was to establish ziprasidone HCl NR 40 mg and trihexyphenidyl HCl SR 4mg in the form of bi-layer sustained release floating tablets. The tablets were prepared using sodium HPMC K4M / HPMC K15M as bio-adhesive polymers and sodium bicarbonate acting as a floating layer. Tablets were evaluated based on different parameters such as thickness, hardness, friability, weight variation, in vitro dissolution studies, content of active ingredient and IR studies. The physico-chemical properties of the finished product complied with the specifications. In vitro release from the formulation was studied as per the USP XXIII dissolution procedure. The formulations gave a normal release effect followed by sustained release for 12 h which indicates bimodal release of ziprasidone HCl from the matrix tablets. The data obtained was fitted to Peppas models. Analysis of n values of the Korsmeyer equation indicated that the drug release involved non-diffusional mechanisms. By the present study, it can be concluded that bi-layer tablets of ziprasidone HCl and trihexyphenidyl HCl will be a useful strategy for extending the metabolism and improving the bioavailability of Ziprasidone HCl and Trihexyphenidyl HCl.


Author(s):  
Shayeda ◽  
Sathish Dharani

The goal of the present investigation was to design and evaluate mucoadhesive buccal patches of Ondansetron Hydrochloride (OND) which is used for nausea and vomiting associated with cancer chemotherapy and radiotherapy. Permeation of OND was calculated ex vivo using porcine buccal membrane. Buccal films were developed by solvent-casting technique using Hydroxy Propyl Methyl Cellulose(HPMC E15) as mucoadhesive polymer. The patches were evaluated for weight variation, thickness variation, surface pH, moisture absorption, in vitro residence time, mechanical properties, in vitro release, ex vivo permeation studies and drug content uniformity. The formulation F3 was found to give the better results and obeys first order kinetics. 


Author(s):  
Chandra Sekhar Kolli ◽  
Ramesh Gannu ◽  
Vamshi Vishnu Yamsani ◽  
Kishan V ◽  
Madhsudan Rao Yamsani

The aim of this investigation was to develop and evaluate mucoadhesive buccal patches of prochlorperazine (PCPZ). Permeation of PCPZ was calculated in vitro using porcine buccal membrane. Buccal formulations were developed by solvent-casting technique using hydroxy propylmethyl cellulose (HPMC) as mucoadhesive polymer. The patches were evaluated for in vitro release, moisture absorption and mechanical properties. The optimized formulation, based on in vitro release and moisture absorption studies, was subjected for bioadhesion studies using porcine buccal membrane. In vitro flux of PCPZ was calculated to be 2.14 ± 0.01 µg. h–1.cm–2 and buccal absorption was also demonstrated in vivo in human volunteers.             In vitro drug release and moisture absorbed was governed by HPMC content. Increasing concentration of HPMC delayed the drug release. All formulations followed Zero order release kinetics whereas the release pattern was non-Fickian. The mechanical properties, tensile strength (10.28 ± 2.27 kg mm–2 for formulation P3) and elongation at break reveal that the formulations were found to be strong but not brittle. The peak detachment force and work of adhesion for formulation P3 were 0.68 ± 0.15 N and 0.14 ± 0.08 mJ, respectively. The results indicate that suitable bioadhesive buccal patches of PCPZ with desired permeability and suitable mechanical properties could be prepared


2017 ◽  
Vol 1 (2) ◽  
pp. 01-04
Author(s):  
Saritha Garrepalli

Prepared nanoparticles were characterized in terms of particle size, scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). In-vitro release studies were performed in phosphate buffer saline pH 7.4 at 37˚±0.5˚C for 1month. The mean particle size of obtained nanoparticles was 150-400 nm and was apparently spherical in shape, with smooth surface. DSC is done for the stability test for pure drug and sample. The thermogram of drug has not shifted for in the formulation compare to pure drug thermogram hence, the stability of formulation is not changed. FT-IR studies demonstrated that the drug was not changed in the formulation during the fabrication process.The encapsulation efficiency was about 48%. The Anastrozole-BSA nanoparticles exhibit a most interesting release profile with small initial burst followed by slower and controlled release.


2013 ◽  
Vol 2 (4) ◽  
pp. 133-140 ◽  
Author(s):  
T Mallamma ◽  
DR Bharathi ◽  
R Yogananda ◽  
G Lakshmi Radhika ◽  
T Vyjayanhimala

Nanoparticles represent a promising drug delivery system of controlled and targeted drug release. They are specially designed to release the drug in the vicinity of target tissue. The aim of this study was to prepare and evaluate polymethacrylic acid nanoparticles containing stavudine in different drug to polymer ratio by nanoprecipitation method to be 121 + 8 to 403 + 4 nm. The particle size of the nanoparticles was gradually increased with increase in the proportion of polymethacrylic acid polymer. The drug content of the nanoparticles was increasing on increasing polymer concentration up to a particular concentration. No appreciable difference was observed in the extent of degradation of product during 60 days in which, nanoparticles were stored at various temperatures. FT-IR studies indicated that there was no chemical interaction between drug and polymer and stability of drug. The in-vitro release behavior from all the drug loaded batches was found to be zero order and provided sustained release over a period of 24 h. The developed formulation overcome and alleviates the drawbacks and limitations of stavudine sustained release formulations and could possibility be advantageous in terms of increased bioavailability of stavudine. DOI: http://dx.doi.org/ International Journal of Pharmaceutical and Life Sciences Volume 2, Issue 4: October 2013; 133-140


Author(s):  
Deborah Ejiogu Chioma ◽  
Felix Sunday Yusuf

Metoclopramide hydrochloride is a dopamine receptor antagonist, used mostly for stomach and esophageal problems as it is a prokinetic agent. The aim of the present study was to design and evaluate the suppositories of Metoclopramide HCl.  Six different, rectal suppositories were developed by fusion (pour-moulding) method by employing various hydrophilic and hydrophobic polymeric bases like gelatin, PEG-400 and hydrogenated vegetable oil using propylene glycol as plasticizer and beeswax as hardening agent.  Metoclopramide HCl suppositories were evaluated for appearance, weight variation, drug content uniformity, liquefaction time and temperature, micro-melting range, disintegration and in-vitro release study.  The in-vitro release rate data was evaluated statistically and was found that from all the formulations the drug release is by diffusion mechanism. Optimum formulation of batch S1 has shown 83.427% Metoclopramide HCl in a study of 2 hrs. These drug release results are supported by the disintegration time of suppositories. Lesser the disintegration time faster the drug release. All formulations has shown zero, first and Higuchi release kinetics. The result suggests that the Metoclopramide HCl suppositories can be prepared by employing hydrophilic and hydrophobic polymers.


Author(s):  
Rohini Sachin More ◽  
Kharwade Rs ◽  
Mahajan Un

ABSTRACTObjective: Domperidone is a synthetic benzimidazole compound that acts as a dopamine D2 receptor antagonist. The main aim of this study was tooptimize and evaluate the floating tablets of domperidone that prolongs the gastric residence time using Hibiscus rosa-sinensis mucilage.Methods: The directly compressible floating tablets of domperidone were formulated using varying amount of hydroxypropyl methylcelluloseK100 M, carbopol 934P and H. rosa-sinensis mucilage. The effervescent components sodium bicarbonate is used for the generation of CO2 gas. Theprepared tablets were evaluated for physicochemical parameters and found to be within range, viz., hardness, swelling index, floating capacity,thickness, and weight variation. Further, tablets were evaluated for in vitro release characteristics. The concentration of H. rosa-sinensis mucilage witha gas-generating agent was optimized to get the sustained release of domperidone.Result: The % cumulative drug release of all formulation from F1 to F6 was within the range of 81.37% to 98.62% for 18 hrs. The release kinetics ofall the dosage forms was calculated using zero order, first order, Higuchi, and Korsmeyer–Peppas. It concludes that the release followed zero orderrelease, whereas the correlation coefficient (r2 value) was higher for zero order release. The release mechanism follows Higuchi model, Korsmeyer-Peppas model, and non-Fickian diffusion.Conclusion: As a result of this study, it may be concluded that the floating tablets using H. rosa-sinensis mucilage in optimized concentrations canbe used to increase the gastric retention time of the dissolution fluid in the stomach to deliver the drug in a sustained manner. Furthermore, from1 month stability data shows no significant change compared to initial result.Keywords: Floating drug delivery, Hibiscus rosa-sinensis mucilage, Domperidone.


Author(s):  
Prakash Goudanavar ◽  
Ankit Acharya ◽  
Vinay C.H

Administration of an antiviral drug, acyclovir via the oral route leads to low and variable bioavailability (15-30%). Therefore, this research work was aimed to enhance bioavailability of acyclovir by nanocrystallization technique. The drug nanocrystals were prepared by anti-solvent precipitation method in which different stabilizers were used. The formed nanocrystals are subjected to biopharmaceutical characterization including solubility, particle size and in-vitro release. SEM studies showed nano-crystals were crystalline nature with sharp peaks. The formulated drug nanocrystals were found to be in the range of 600-900nm and formulations NC7 and NC8 showed marked improvement in dissolution velocity when compared to pure drug, thus providing greater bioavailability. FT-IR and DSC studies revealed the absence of any chemical interaction between drug and polymers used. 


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


Author(s):  
Sahil Kumar ◽  
Bandna Sharma ◽  
Tilak R. Bhardwaj ◽  
Rajesh K. Singh

Aims: In the present study, polymer-drug conjugates were synthesized based on azo-bond cleavage drug delivery approach for targeting erlotinib as anticancer drug specifically to the colon for the proficient treatment of colon cancer. Background: Colon cancer (CC) is the third commonly detected tumor worldwide and it make up about 10 % of all cases of cancers. Most of the chemotherapeutic drugs available for treating colon cancer are not only toxic to cancerous cells but also to the normal healthy cells. Among the various approaches to get rid of the adverse effects of anticancer agents, prodrugs are one of the most imperative approaches. Objective: The objective of the study is to chemically modify the erlotinib drug through azo-bond linkage and suitable spacer which will be finally linked to polymeric backbone to give desired polymer linked prodrug. The azo reductase enzyme present in colon is supposed to cleave the azo-bond specifically and augment the drug release at the colon. Methods: The synthesized conjugates were characterized by IR and 1H-NMR spectroscopy. The cleavage of aromatic azobond resulted in a potential colon-specific liberation of drug from conjugate studied in rat fecal contents. In vitro release profiles of polyphosphazene-linked conjugates of erlotinib have been studied at pH 1.2, pH 6.8 and pH 7.4. The stability study was designed to exhibit that free drug was released proficiently and unmodified from polyphosphazene-erlotinib conjugates having aromatic azo-bond in artificial colon conditions. Results: The synthesized conjugates were demonstrated to be stable in simulated upper gastro-intestinal tract conditions. The drug release kinetics shows that all the polymer-drug conjugates of erlotinib follow zero-order release kinetics which indicates that the drug release from the polymeric backbone is independent of its concentration. Kinetic study of conjugates with slope (n) shows the anomalous type of release with an exponent (n) > 0.89 indicating a super case II type of release. Conclusion: These studies indicate that polyphosphazene linked drug conjugates of erlotinib could be the promising candidates for the site-specific treatment of colon cancer with least detrimental side-effects.


Sign in / Sign up

Export Citation Format

Share Document