scholarly journals In-silico ADMET predicated Pharmacoinformatics of Quercetin-3-Galactoside, polyphenolic compound from Azadirachta indica, a sacred tree from Hill Temple in Alagarkovil Reserve Forest, Eastern Ghats, INDIA

2021 ◽  
Vol 11 (5-S) ◽  
pp. 77-84
Author(s):  
M. Sabitha ◽  
K. Krishnaveni ◽  
M. Murugan ◽  
A N Basha ◽  
Gilse A Pallan ◽  
...  

Quercetin (3,3′,4′,5,7-Pentahydroxyflavone) is the one among the bioactive secondary metabolite (BASM) in neem seed of Azadirachta indica A. Juss. Quercetin (Que) and its derivatives hold promising pharmacological effects. Antidiabetic, anti-inflammatory, antioxidant, antimicrobial, anti-Alzheimer’s, antiarthritic, cardiovascular, and wound-healing effects of Que have been extensively investigated, recently lot of work has been carried out on its anticancer activity against different cancer cell lines. Recently, in silico/ in vitro studies have demonstrated that Que interferes with different stages of coronavirus entry and replication cycle (PLpro, 3CLpro, and NTPase/helicase). Due to its pleiotropic effects in human health and disease and lack of systemic toxicity, Que and its derivatives could be tested for their efficacy on human target system in future clinical trials. In the present study, an attempt has been made to evaluate the physicochemical, druggable properties of Que from A. indica to prospect its ADMET properties. Keywords: NEEM; Azadirachta indica; Quercetin; Pharmacoinformatics; ADMET; Drug-Likeness; Toxicology

2020 ◽  
Vol 18 ◽  
Author(s):  
Debadash Panigrahi ◽  
Ganesh Prasad Mishra

Objective:: Recent pandemic caused by SARS-CoV-2 described in Wuhan China in December-2019 spread widely almost all the countries of the world. Corona virus (COVID-19) is causing the unexpected death of many peoples and severe economic loss in several countries. Virtual screening based on molecular docking, drug-likeness prediction, and in silico ADMET study has become an effective tool for the identification of small molecules as novel antiviral drugs to treat diseases. Methods:: In the current study, virtual screening was performed through molecular docking for identifying potent inhibitors against Mpro enzyme from the ZINC library for the possible treatment of COVID-19 pandemic. Interestingly, some compounds are identified as possible anti-covid-19 agents for future research. 350 compounds were screened based on their similarity score with reference compound X77 from ZINC data bank and were subjected to docking with crystal structure available of Mpro enzyme. These compounds were then filtered by their in silico ADME-Tox and drug-likeness prediction values. Result:: Out of these 350 screened compounds, 10 compounds were selected based on their docking score and best docked pose in comparison to the reference compound X77. In silico ADME-Tox and drug likeliness predictions of the top compounds were performed and found to be excellent results. All the 10 screened compounds showed significant binding pose with the target enzyme main protease (Mpro) enzyme and satisfactory pharmacokinetic and toxicological properties. Conclusion:: Based on results we can suggest that the identified compounds may be considered for therapeutic development against the COVID-19 virus and can be further evaluated for in vitro activity, preclinical, clinical studies and formulated in a suitable dosage form to maximize their bioavailability.


Author(s):  
Saurabh C. Khadse ◽  
Nikhil D. Amnerkar ◽  
Manasi U. Dave ◽  
Deepak K. Lokwani ◽  
Ravindra R. Patil ◽  
...  

Abstract Background A small library of quinazolin-4-one clubbed thiazole acetates/acetamides lacking toxicity-producing functionalities was designed, synthesized, and evaluated for antidiabetic potential as glucokinase activators (GKA). Molecular docking studies were done in the allosteric site of the human glucokinase (PDB ID: 1V4S) enzyme to assess the binding mode and interactions of synthesized hits for best-fit conformations. All the compounds were evaluated by in vitro enzymatic assay for GK activation. Results Data showed that compounds 3 (EC50 = 632 nM) and 4 (EC50 = 516 nM) showed maximum GK activation compared to the standards RO-281675 and piragliatin. Based on the results of the in vitro enzyme assay, docking studies, and substitution pattern, selected compounds were tested for their glucose-lowering effect in vivo by oral glucose tolerance test (OGTT) in normal rats. Compounds 3 (133 mg/dL) and 4 (135 mg/dL) exhibited prominent activity by lowering the glucose level to almost normal, eliciting the results in parallel to enzyme assay and docking studies. Binding free energy, hydrogen bonding, and π–π interactions of most active quinazolin-4-one derivatives 3 and 4 with key amino acid residues of the 1V4S enzyme were studied precisely. Preliminary in-silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction was carried out using SwissADME and PreADMET online software which revealed that all the compounds have the potential to become orally active antidiabetic agents as they obeyed Lipinski's rule of five. Conclusion The results revealed that the designed lead could be significant for the strategic design of safe, effective, and orally bioavailable quinazolinone derivatives as glucokinase activators.


2020 ◽  
Vol 157 ◽  
pp. 54-75 ◽  
Author(s):  
Henry Sutanto ◽  
Aurore Lyon ◽  
Joost Lumens ◽  
Ulrich Schotten ◽  
Dobromir Dobrev ◽  
...  

2019 ◽  
Vol 11 (2) ◽  
pp. 118-128 ◽  
Author(s):  
Rajagopal Kalirajan ◽  
Arumugasamy Pandiselvi ◽  
Byran Gowramma ◽  
Pandiyan Balachandran

Background: Human Epidermal development factor Receptor-2 (HER2) is a membrane tyrosine kinase which is overexpressed and gene amplified in human breast cancers. HER2 amplification and overexpression have been linked to important tumor cell proliferation and survival pathways for 20% of instances of breast cancer. 9-aminoacridines are significant DNA-intercalating agents because of their antiproliferative properties. Objective: Some novel isoxazole substituted 9-anilinoacridines(1a-z) were designed by in-silico technique for their HER2 inhibitory activity. Docking investigations of compounds 1a-z are performed against HER2 (PDB id-3PP0) by using Schrodinger suit 2016-2. Methods: Molecular docking study for the designed molecules 1a-z are performed by Glide module, in-silico ADMET screening by QikProp module and binding free energy by Prime-MMGBSA module of Schrodinger suit. The binding affinity of designed molecules 1a-z towards HER2 was chosen based on GLIDE score. Results: Many compounds showed good hydrophobic communications and hydrogen bonding associations to hinder HER2. The compounds 1a-z, aside from 1z have significant Glide scores in the scope of - 4.91 to - 10.59 when compared with the standard Ethacridine (- 4.23) and Tamoxifen (- 3.78). The in-silico ADMET properties are inside the suggested about drug likeness. MM-GBSA binding of the most intense inhibitor is positive. Conclusion: The outcomes reveal that this study provides evidence for the consideration of isoxazole substituted 9-aminoacridine derivatives as potential HER2 inhibitors. The compounds, 1s,x,v,a,j,r with significant Glide scores may produce significant anti breast cancer activity and further in vitro and in vivo investigations may prove their therapeutic potential.


2020 ◽  
Vol 32 (8) ◽  
pp. 1972-1980
Author(s):  
Anas R. Al Johani ◽  
Saud M. Almutairi ◽  
Wael S. El-Sayed ◽  
Pramod K. Sahu ◽  
Praveen K. Sahu ◽  
...  

A series of sixteen new ionic liquids (ILs) bearing imidazolium moiety were designed and synthesized under sustainable and green conditions which were confirmed by analytical and spectral techniques using 1H- & 13C-NMR, FT-IR, mass and elemental analysis. A panel of clinically isolated strains was used for in vitro inhibitory antimicrobial activities screening of synthesized ionic liquids. The results of antimicrobial assay showed that some of synthesized ionic liquids showed moderate to good activity. Among these ILs, ionic liquids 3, 4 and 5 (bearing alkyl chain with a phenyl group) significantly inhibited cell growth of strains. In this regard, these ionic liquids considered as promising antibacterial agents when compared with standard antibiotics. By encouraging in vitro antimicrobial screening, in silico ADMET evaluation has been performed and found excellent pharmacokinetic, bioavailability and toxicity profiles. Synthesized ionic liquids has found to be safe and non-toxic according to calculated in vivo computed LD50 values (2.49-2.80 mg/kg) for rat acute toxicity.


2021 ◽  
Vol 13 (1) ◽  
pp. 221-235
Author(s):  
M. M. Matin ◽  
S. A. Chowdhury ◽  
M. M. H. Bhuiyan ◽  
S. M. A. Kawsar ◽  
M. A. Alam

Dimolar pentanoylation of methyl α-D-glucopyranoside using direct method furnished the 2,6-di-O-pentanoate indicating regioselectivity at C-6 and C-2 positions. To develop glucopyranoside based potential antimicrobial agents, 2,6-di-O-pentanoate was further converted into eight newer 3,4-di-O-acyl esters reasonably in good yields. Both prediction of activity spectra for substances (PASS) and in vitro antimicrobial activity test established them as better antifungals than antibacterials. PASS predication also indicated that these sugar esters (SEs) are more potent as anticarcinogenic agents than as antioxidant agents. Structure activity relationship along with in silico ADMET studies clearly indicated that combination of pentanoyl (C5) and lauroyl (C12) in the glucopyranoside framework could be a potential antifungal agent especially against Macrophomina phaseolina.


2021 ◽  
Vol 22 ◽  
Author(s):  
Nour El-Huda Daoud ◽  
Pobitra Borah ◽  
Pran Kishore Deb ◽  
Katharigatta N. Venugopala ◽  
Wafa Hourani ◽  
...  

: In the drug discovery setting, undesirable ADMET properties of a pharmacophore with good predictive power obtained after a tedious drug discovery and development process may lead to late-stage attrition. The early-stage ADMET profiling has introduced a new dimension to leading development. Although several high-throughput in vitro models are available for ADMET profiling, however, the in silico methods are gaining more importance because of their economic and faster prediction ability without the requirements of tedious and expensive laboratory resources. Nonetheless, in silico ADMET tools alone are not accurate and, therefore, ideally adopted along with in vitro and or in vivo methods in order to enhance predictability power. This review summarizes the significance and challenges associated with the application of in silico tools as well as the possible scope of in vitro models for integration to improve the ADMET predictability power of these tools.


Author(s):  
Kai-Xia Zhang ◽  
Peng-Ru Wang ◽  
Fei Chen ◽  
Xi-Jing Qian ◽  
Lin Jia ◽  
...  

Background: Licorice is widely used as a hepatoprotective herb for thousands of years in Traditional Chinese Medicine, and its main chemical constituent glycyrrhizin (GL) is used as a treatment for chronic hepatitis in Japan for over 20 years. 18β-Glycyrrhetinic acid (GA) is the main active metabolite of GL. Objective: Series of GA derivatives were designed and synthesized, and their anti-HCV activities were screened to investigate structure-activity relationship (SAR). Besides, their in-silico ADMET properties were analyzed to search for promising lead compound for further identification of anti-HCV terpenoid candidate. Methods: GA derivatives were synthesized via reactions of oxidation, oxime, rearrangement, esterification and acylation, etc. In vitro anti-HCV activity of derivatives was tested on the HCV cell culture (HCVcc) system. In-silico ADMET properties analysis were performed via “pkCSM” and “SwissADME” platforms. Results: Eighteen GA derivatives were synthesized and their structures were confirmed by MS and NMR spectrums. All compounds exhibited superior HCV inhibitory activity to that of GA. Compound 2 possessed the most potent anti-HCV activity with IC50 value of 0.79 μM, which is nearly 58 times potent than SA (a previously reported potent anti-HCV terpenoids) and >200 times than GA. SAR revealed the introduction of 3-oxo, short-chain (C1-C3) aliphatic alcohols or cyclic aliphatic amines is conducive to improving anti-HCV activity. In-silico ADMET prediction demonstrated most of the potent compounds possessed favorable ADMET properties. Conclusion: Structural modification of GA at 3-position and 30-position is an effective approach to searching for potent anti-HCV agents. Compound 2, with the most potent anti-HCV activity and favorable in-silico ADMET properties, is a promising lead compound for further identification of anti-HCV terpenoid candidate.


Sign in / Sign up

Export Citation Format

Share Document