scholarly journals Development and characterization of effervescent floating tablet of famotidine for treatment of peptic ulcer

2021 ◽  
Vol 11 (5-S) ◽  
pp. 119-123
Author(s):  
Shilpi Sahu ◽  
Vivek Jain ◽  
Sunil Kumar Jain ◽  
Pushpendra Kumar Jain

Floating drug delivery systems (FDDS) are utilized to target drug discharge in the stomach or to the upper parts of intestine. Famotidine has been the most extensively used drug for the management of peptic ulcer for various decades. The current study concerns the development and evaluation of floating tablets of famotidine which, after oral administration, are planned to extend the gastric residence time, enhance drug bioavailability and aim the gastric ulcer. A FDDS was expanded using gas-forming agents, like sodium bicarbonate, citric acid and hydrocolloids, like hydroxypropyl methylcellulose (HPMC) and carbopol 934P. The prepared tablets were evaluated in terms of their pre-compression parameters, physical characteristics, buoyancy, buoyancy lag-time, in vitro release, and swelling index. The formulations were optimized for the different viscosity grades of HPMC, carbopol 934P and its concentrations and combinations. The consequences of the in vitro release studies demonstrated that the optimized formulation (F6) could sustain drug release (98%) for 24 h and remain buoyant for 24 hr. Optimized formulation (F6) showed no considerable change in physical appearance, drug content, total buoyancy time or in vitro dissolution study after storage at 40°C/75% RH for 3 months. Lastly the tablet formulations establish to be economical and may conquer the draw backs associated with the drug during its absorption. Keywords: Famotidine, Floating drug delivery system, Hydrocolloids, Gastric residence time.

2019 ◽  
Vol 16 (10) ◽  
pp. 874-886
Author(s):  
Ankit Namdev ◽  
Dharmendra Jain

: Floating drug delivery system (FDDS) is the main approach to prolonging the gastric residence time in the stomach in which the bilayer floating tablet has the main role. It is more suitable for the treatment of local infections such as peptic ulcer, gastritis, Zollinger-Ellision syndrome, indigestion, and other local infections related to the gastrointestinal tract and also used for systemic applications. FDDS provides protection for those drugs which are acid labile and have a short half-life. It also improves bioavailability, reduces drug waste, and enhances the residence time of drugs. Nowadays, various technologies are being used for the development of FDDS. Novel drug delivery systems incorporation into bilayer floating tablets have also broadened the role of FDDS. Polymers have the main role in the development of FDDS, which serve as carriers for the drug and determine the gastric retention time and drug protection. FDDS is also an easy, cheap, and more convenient method for dual drug delivery of drugs.


2020 ◽  
Vol 10 (3-s) ◽  
pp. 43-46
Author(s):  
Dipali Trivedi ◽  
Arti Majumdar ◽  
Neelesh Malviya

Besides enormous improvements in drug delivery, oral route has been highly and effectively utilized route of administration. Floating drug delivery that is also known to be low density system is advancement in the class of gastro-retentive drug delivery system. In the present research work, floating drug delivery of Rilpivirine hydrochloride was developed by overcoming various limitations and troubles associated with the drug including poor absorption in intestinal pH and degradation when comes in contact with higher pH environment. [2] Prepared formulations were evaluated for various parameters like friability, hardness, thickness, drug content analysis, floating properties and in-vitro drug release study. Based on the evaluation, concluded that floating drug delivery system is a non-toxic as well as cost-effective technique for the rationale of enhancing bioavailability and absorption of poorly water soluble drugs. The improvement in gastric residence time is a clear sign. It can be able to use in the future for more acidic soluble drugs to enhance solubility and absorption. Keywords: Floating drug delivery, gastric residence time, Rilpivirine, effervescent, NNRTI.


2021 ◽  
Vol 12 (1) ◽  
pp. 33-39
Author(s):  
Ankita Tripathi ◽  
Suraj Neupane ◽  
Khushboo Bhardwaj ◽  
Shiva Mishra ◽  
Meenakshi Gupta ◽  
...  

The purpose of the present work is to prolong the gastric residence time of Lornoxicam by developing gastric floating drug delivery system. Lornoxicam is non-steroidal anti-inflammatory drugs. Its short half life 2 to 3 hrs and maximal absorption of upper part of gastrointestinal tract. The residence time of the dosage form in the stomach depends upon various factors like pH, size of the dosage form, food intake, and biological factors which include age, body weight gender, posture, and diseased states Floating tablet prepared by melt granulation techniques, using bees wax as a binder and the other polymers include HPMC 50cPs,15cPs,5cPs and Sodium Alginate. The Prepared granules were then evaluated for Precompression Properties. The best batches were then tabulated, and Evaluation was carried out for the following parameters with in vitro release, buoyancy, Floating Lag timed. Batch F12 and F13 Showed best Floating time of 12hrs and Floating Lag time of 60 second.


2009 ◽  
Vol 25 (2) ◽  
pp. 161-177 ◽  
Author(s):  
Bhavesh D. Kevadiya ◽  
Ghanshyam V. Joshi ◽  
Hasmukh A. Patel ◽  
Pravin G. Ingole ◽  
Haresh M. Mody ◽  
...  

Author(s):  
Omar Saeb Salih ◽  
Roaa Abdalhameed Nief

ABSTRACTObjective: The objective of this study is to develop a controlled release matrix tablet of candesartan cilexetil to reduce the frequency of administration,enhance bioavailability and improve patient compliance; a once daily sustained release formulation of candesartan cilexetil is desirable.Methods: The prepared tablets from F1 to F24 were evaluated with different evaluation parameters like weight variation, drug content, friability,hardness, thickness and swelling ability. In vitro release for all formulas were studied depends on the type and amount of each polymer, i.e. (16 mg,32 mg and 48 mg) respectively beside to the combination effect of polymers on the release of the drug from the tablet.Results: In vitro release showed that formula 13 had the faster release (100% after 4 h) which contained acacia (1:1) and the lowest sustain releasewas showed for F7 (73% after 8 h) which contained HPMC K100M (1:1). Formula 1 was an 89 % release after 8 h which contain eudragit RS100; F4was a 100 % release after 5 h which contain Na CMC, F10 was a 100% after 8 h which contain xanthan gum and F16 was a 100 % release after 5 hwhich contain tragacanth polymer. Formula 9 had a lower release than F7 and F8 respectively. Formula 7 can be used for sustain oral drug delivery ofcandesartan cilexetil while Formula 13 can be used in contrary as fast release tablets for faster response.Conclusion: Controlled drug delivery system is promising for less dosing and higher patient compliance.Keywords: Angiotensin II receptor antagonist, Hypertension, Matrix system, Control release.


2012 ◽  
Vol 32 (11) ◽  
pp. 2679-2690 ◽  
Author(s):  
Hiva Baradari ◽  
Chantal Damia ◽  
Maggy Dutreih-Colas ◽  
Etienne Laborde ◽  
Nathalie Pécout ◽  
...  

2021 ◽  
Vol 14 ◽  
Author(s):  
Sarbjot Kaur ◽  
Ujjwal Nautiyal ◽  
Pooja A. Chawla ◽  
Viney Chawla

Background: Background: Olanzapine belongs to a new class of dual spectrum antipsychotic agents. It is known to show promise in managing both the positive and negative symptoms of schizophrenia. Drug delivery systems based on nanostructured lipid carriers (NLC) are expected to provide rapid nose-to-brain transport of this drug and improved distribution into and within the brain. Objective: The present study deals with the preparation and evaluation of olanzapine loaded NLC via the intranasal route for schizophrenia. Methods: Olanzapine-NLC were formulated through the solvent injection method using isopropyl alcohol as the solvent, stearic acid as solid lipid, and oleic acid as liquid lipid, chitosan as a coating agent, and Poloxamer 407 as a surfactant. NLC were characterized for particle size, polydispersity index, entrapment efficiency, pH, viscosity, X-ray diffraction studies, in-vitro mucoadhesion study, in- vitro release and ex-vivo permeation studies. The shape and surface morphology of the prepared NLC was determined through transmission electron microscopy. To detect the interaction of the drug with carriers, compatibility studies were also carried out. Results: Average size and polydispersity index of developed formulation S6 was 227.0±6.3 nm and 0.460 respectively. The encapsulation efficiency of formulation S6 was found to be 87.25 %. The pH, viscosity, in-vitro mucoadhesion study, and in- vitro release of optimized olanzapine loaded NLC were recorded as 5.7 ± 0.05, 78 centipoise, 15±2 min, and 91.96 % respectively. In ex-vivo permeation studies, the percent drug permeated after 210 min was found to be 84.03%. Conclusion: These results reveal potential application of novel olanzapine-NLC in intranasal drug delivery system for treatment of schizophrenia.


Author(s):  
Anupam K Sachan ◽  
Saurabh Singh ◽  
Kiran Kumari ◽  
Pratibha Devi

Microspheres carrier system made from natural or synthetic polymers used in sustained release drug delivery system. The present study involves formulation and evaluation of floating microspheres of Curcumin for improving the drug bioavailability by prolongation gastric residence time. Curcumin, natural hypoglycemic agent is a lipophilic drug, absorbed poorly from the stomach, quickly eliminated and having short half-life so suitable to formulate floating drug delivery system for sustained release. Floating microspheres of curcumin were formulated by solvent evaporation technique using ethanol and dichloromethane (1:1) as organic solvent and incorporating various synthetic polymers as coating polymer, sustain release polymers and floating agent. The final formulation were evaluated various parameters such as compatibility studies, micrometric properties, In-vitro drug release and % buoyancy. FTIR studies showed that there were no interaction between drug and excipients. The surface morphology studies by SEM confirmed their spherical and smooth surface. The mean particles size were found to be 416-618µm, practical yield of microspheres was in the range of 60.21±0.052% - 80.87±0.043%, drug entrapment efficiency 47.4±0.065% - 77.9±0.036% and % buoyancy 62,24±0.161% - 88.63±0.413%. Result show that entraptmency increased as polymer (Eudragit RS100) conc. Increased. The drug release after 12 hrs. was 72.13% - 87.13% and it decrease as a polymer (HPMC, EC) concentration was decrease.


Sign in / Sign up

Export Citation Format

Share Document