scholarly journals Estimation of genetic variability and interrelationship among yield and yield related charactres in mung bean (Vigna radiata (L.) Wilczek)

2020 ◽  
Vol 8 (6) ◽  
pp. 1809-1813
Author(s):  
Rohini Kurandale ◽  
Gitesh Padol ◽  
Suresh BG ◽  
GR Lavanya
2021 ◽  
Vol 22 (11) ◽  
Author(s):  
Yeni Fatmawati ◽  
Agus Budi Setiawan ◽  
Aziz Purwantoro ◽  
Dyah Weny Respatie ◽  
Chee How Teo

Abstract. Fatmawati Y, Setiawan AB, Purwantoro A, Respatie DW, Teo CH. 2021. Analysis of genetic variability in F2 interspecific hybrids of mung bean (Vigna radiata) using inter-retrotransposon amplified polymorphism marker system. Biodiversitas 22: 4880-4889. Mung bean (Vigna radiata L. Wilczek) categorized as one of the pivotal annual crops of Vigna genera is commonly cultivated in rotation with the cereal crops during the drought season. Conversely, to ameliorate its stunted productivity, the interspecific hybridization technique has been introduced between the mung bean and the common bean to promote genetic improvement with the breeding projects in Indonesia. However, since mung bean is a self-pollinated crop and has a narrow genetic base, the selection and improvement of a specific trait using marker-assisted selection is more challenging. Hence, a precautionary investigation is imperative to evaluate the progenies resulting from interspecific hybridization using an ideal marker. This study aimed to investigate the genetic variability of the F2 population of the interspecific mung bean hybrids using retrotransposon-based markers, particularly Inter-Retrotransposon Amplified Polymorphism (IRAP) markers. In this study, we identified retrotransposon from the mung bean genome and determined the Long Terminal Repeat (LTR) sequence using the LTR Finder. The IRAP primers were designed from a conserved region of the LTR sequence. One hundred of the F2 interspecific hybrids generated from the crossing between mung bean and common bean were successfully discriminated by IRAP markers. The IRAP marker showed high heterozygosity and moderate Polymorphic Information Content (PIC) values. The IRAP markers were able to detect genetic variability in the F2 progenies resulting from the interspecific hybridization. Cluster analysis showed that 100 of the F2 progenies were grouped into three clusters. This study demonstrated that retrotransposon-based markers can offer an effective approach for evaluating the segregation in the F2 population of intercross hybrids in the mung bean.


2021 ◽  
Author(s):  
Hussan Bano ◽  
Habib‐ur‐Rehman Athar ◽  
Zafar Ullah Zafar ◽  
Hazem M. Kalaji ◽  
Muhammad Ashraf

2020 ◽  
Vol 7 (3) ◽  
pp. 975-983 ◽  
Author(s):  
Yooeun Chae ◽  
Youn-Joo An

This study investigated the transfer of plastic debris in a terrestrial environment from the soil to a plant (the mung bean, Vigna radiata), and then to a consumer (the African giant snail, Achatina fulica).


2003 ◽  
Vol 49 (1) ◽  
pp. 45-50 ◽  
Author(s):  
William F Fett ◽  
Peter H Cooke

Native biofilms present on the adaxial surface of cotyledons of mung bean sprouts (Vigna radiata) were studied by use of scanning electron microscopy. Biofilms were abundant on the cotyledon surfaces and were comprised of rod-shaped bacteria, cocci-shaped bacteria, or yeasts, often with one type of microbe predominant. In contrast to our earlier study of biofilms on green sprouts (alfalfa, clover, broccoli, and sunflower), yeast and cocci were abundant on mung bean. Filamentous fungi were not observed. Sheet-like or fibrillar material (presumably composed of secreted microbial polysaccharides, proteins, lipids, and nucleic acids) fully or partially covered the biofilms. Biofilms up to 5 mm in length were observed, and some biofilms were comprised of more than just a monolayer of microbial cells. Native biofilms on sprout surfaces undoubtedly play an important role in the ecology of plant epiphytic microbes and may also afford protected sites for plant and human bacterial pathogens.Key words: mung bean sprouts, biofilms, native microflora, scanning electron microscopy, food safety.


Sign in / Sign up

Export Citation Format

Share Document