scholarly journals Inisiasi, pertumbuhan, dan perkembangan kalus embriogenik tanaman stevia (Stevia rebaudiana)

2021 ◽  
Vol 89 (2) ◽  
Author(s):  
Masna Maya SINTA ◽  
Rizka Tamania SAPTARI ◽  
. SUMARYONO

The leaves of sweetener plant Stevia rebaudiana contain secondary metabolites of steviol glycosides which are very sweet, with no calorie and zero glycemic index. Propagation of stevia by seeds is ineffective due to its low germination rate and diverse progenies. The tissue culture of stevia can be used to mass propagate rapidly and is commonly conducted by shoot multiplication. Up to now, the technology of somatic embryogenesis (SE) in stevia has not been successful yet. SE is developed to increase the production scale, rejuvenate clonal-propagated plants, and plant genetic transformation. The research objective was to develop protocols for the initiation, proliferation, and development of embryogenic calli of stevia as potential materials for SE. The explants used were young leaves, nodes, and internodes of axenic plantlets of stevia BX clone. The explants were cultured on MS solid media containing different concentrations of auxin and cytokinin for callus initiation. Callus emerged after 2-3 weeks of culture. The calli obtained were proliferated by subculturing several times as material stocks for indirect SE. MS solid media added with 1 µM 3,4-D and 16 mM CaCl2 gave the highest callus multiplication rate (4.7 times in 3 weeks). The selection of embryogenic calli was made continuously to obtain a pure line of embryogenic calli. Three types of calli attained were friable, fast-growing, yellowish calli, shiny nodular calli, and greenish nodular calli. Histological studies revealed that cells of the nodular calli had been differentiated to potentially formed somatic embryos.

2016 ◽  
Vol 79 (2) ◽  
Author(s):  
. SUMARYONO ◽  
Masna Maya SINTA

AbstractStevia (Stevia rebaudiana Bertoni) is a natural zero-calorie sweetener plant grown in a high population density.Tissue culture technique is useful for rapid mass propagationof plants to provide superior planting materials. Experimentswere conducted to increase growth and multiplication ofshoots and vigor of plantlets of stevia. Explants used wereapical and axillary buds from plantlets grown on MS mediumwithout plant growth regulators. Combinations of BA andIAA at different concentrations were used for shoot growthand multiplication, whereas plant growth retardants(ancymidol and paclobutrazol) and light intensity were usedfor plantlet vigor. The results showed that stevia explantscultured on MS medium without plant growth regulatorsproduced the highest shoots (4.5 cm) with two shoots perexplant. The best multiplication rate of shoots were found onMS medium added with 1.13 mg/L BA combined with0.35 mg/L IAA which produced on average 4.5 shoots and11.9 nodes per initial explant. Ancymidol and paclobutrazolconcentrations affected significantly growth and vigor ofstevia plantlets. Increasing the concentration of ancymidoland paclobutrazol decreased plantlet height and biomassfresh weight, but increased stem diameter. Paclobutrazol at0.1 mg/L was the best treatment to increase the vigor ofstevia plantlets. Light intensity at 20 µmol/m 2 /s gave betterplantlet vigor than other light intensities. It can be concludedthat multiplication of stevia shoots should be grown on MSmedium supplemented with 1.13 mg/L BA + 0.35 mg/L IAAand the vigor of the shoots can be increased by culturing onMS medium containing 0.1 mg/L paclobutrazol underfluorescence lamps with 20 µmol/m 2 /s light intensity.AbstrakStevia (Stevia rebaudiana Bertoni) adalah tanamanpemanis alami nir-kalori yang ditanam dengan kerapatanpopulasi yang sangat tinggi. Teknik kultur jaringan dapatdigunakan untuk perbanyakan tanaman secara massal dancepat untuk menyediakan bahan tanam unggul. Penelitiantelah dilakukan untuk meningkatkan pertumbuhan danmultiplikasi tunas dan keragaan planlet stevia. Eksplan yangdigunakan adalah tunas pucuk dan tunas samping dari planletyang ditumbuhkan pada medium MS tanpa zat pengaturtumbuh. Kombinasi BA dan IAA dengan konsentrasi yangberbeda digunakan untuk pertumbuhan dan multiplikasitunas, sedangkan zat penghambat tumbuh (ansimidol danpaklobutrazol) serta intensitas cahaya digunakan untukkeragaan planlet. Hasil penelitian menunjukkan bahwaeksplan stevia yang ditumbuhkan pada medium MS tanpa zatpengatur tumbuh menghasilkan tunas paling tinggi (4,5 cm)dengan dua tunas per eksplan. Multiplikasi tunas terbaikdiperoleh pada medium dengan BA 1,13 mg/L yangdikombinasikan dengan IAA 0,35 mg/L yang menghasilkan4,5 tunas dan 11,9 ruas per eksplan awal. Konsentrasiansimidol dan paklobutrazol berpengaruh nyata terhadappertumbuhan dan keragaan planlet stevia. Meningkatnyakonsentrasi ansimidol dan paklobutrazol menurunkan tinggiplanlet dan bobot basah biomassa, tetapi meningkatkandiameter batang. Paklobutrazol pada konsentrasi 0,1 mg/Lmerupakan perlakuan terbaik untuk meningkatkan keragaanplanlet stevia. Intensitas cahaya pada 20 µmol/m 2 /detikmemberikan keragaan planlet yang lebih baik dibandingkanintensitas cahaya yang lain. Dapat disimpulkan bahwamultiplikasi tunas stevia sebaiknya dilakukan pada mediumMS ditambah BA 1,13 mg/L + IAA 0,35 mg/L dan keragaanplanlet dapat ditingkatkan dengan menanam planlet padamedium MS ditambah paklobutrazol 0,1 mg/L di bawahlampu fluoresen dengan intensitas cahaya 20 µmol/m 2 /detik.


2021 ◽  
Vol 137 ◽  
pp. 265-271
Author(s):  
Diako Rasouli ◽  
Stefaan Werbrouck ◽  
Bahram Maleki ◽  
Hossein Jafary ◽  
Valerie Schurdi-Levraud

2019 ◽  
Vol 18 (6) ◽  
pp. 47-56
Author(s):  
Begum Kaplan ◽  
Selda Duraklioglu ◽  
Kenan Turgut

Stevia rebaudiana Bertoni is a perennial plant belonging to Asteraceae family and its leaves contain steviol glycosides (SGs) that are 150 to 300 times sweeter than sucrose. The sweeteners obtained from S. rebaudiana can be safely used by diabetics as insulin secretion is not required during digestion of this sweetener. As it has zero calories, it is also used in diet products. Adaptation studies for Stevia conducted in Antalya, Turkey have shown that the stevia plant could easily be cultivated as a perennial. However, the lack of a sustainable vegetative propagation method creates a significant problem for stevia production. In the generatively populations, homogeneity and therefore quality are decreased because of cross-pollination. Stevia, as a self-incompatible and cross-pollinated species, has been shown to have very high genetic diversity. Therefore, development of a sustainable in vitro propagation method to prevent genetic heterogeneity of selected varieties is crucial for stevia cultivation. The aim of this study was to evaluate 2 different gelling agents (plant agar and Gelrite) and 20 different growth regulators combinations. The results demonstrated an approximately 200-fold multiplication rate obtained within 13 weeks using MS medium supplemented with 0.5 mg·dm–3 BAP and 0.25 mg·dm–3 kinetin and solidified with Gelrite. Average stevioside and rebaudioside A contents in in vitro propagated plant samples were found to be 8.1% and 8.6%, respectively.


2016 ◽  
Vol 79 (2) ◽  
Author(s):  
. SUMARYONO ◽  
Masna Maya SINTA

AbstractStevia (Stevia rebaudiana Bertoni) is a natural zero-calorie sweetener plant grown in a high population density.Tissue culture technique is useful for rapid mass propagationof plants to provide superior planting materials. Experimentswere conducted to increase growth and multiplication ofshoots and vigor of plantlets of stevia. Explants used wereapical and axillary buds from plantlets grown on MS mediumwithout plant growth regulators. Combinations of BA andIAA at different concentrations were used for shoot growthand multiplication, whereas plant growth retardants(ancymidol and paclobutrazol) and light intensity were usedfor plantlet vigor. The results showed that stevia explantscultured on MS medium without plant growth regulatorsproduced the highest shoots (4.5 cm) with two shoots perexplant. The best multiplication rate of shoots were found onMS medium added with 1.13 mg/L BA combined with0.35 mg/L IAA which produced on average 4.5 shoots and11.9 nodes per initial explant. Ancymidol and paclobutrazolconcentrations affected significantly growth and vigor ofstevia plantlets. Increasing the concentration of ancymidoland paclobutrazol decreased plantlet height and biomassfresh weight, but increased stem diameter. Paclobutrazol at0.1 mg/L was the best treatment to increase the vigor ofstevia plantlets. Light intensity at 20 µmol/m 2 /s gave betterplantlet vigor than other light intensities. It can be concludedthat multiplication of stevia shoots should be grown on MSmedium supplemented with 1.13 mg/L BA + 0.35 mg/L IAAand the vigor of the shoots can be increased by culturing onMS medium containing 0.1 mg/L paclobutrazol underfluorescence lamps with 20 µmol/m 2 /s light intensity.AbstrakStevia (Stevia rebaudiana Bertoni) adalah tanamanpemanis alami nir-kalori yang ditanam dengan kerapatanpopulasi yang sangat tinggi. Teknik kultur jaringan dapatdigunakan untuk perbanyakan tanaman secara massal dancepat untuk menyediakan bahan tanam unggul. Penelitiantelah dilakukan untuk meningkatkan pertumbuhan danmultiplikasi tunas dan keragaan planlet stevia. Eksplan yangdigunakan adalah tunas pucuk dan tunas samping dari planletyang ditumbuhkan pada medium MS tanpa zat pengaturtumbuh. Kombinasi BA dan IAA dengan konsentrasi yangberbeda digunakan untuk pertumbuhan dan multiplikasitunas, sedangkan zat penghambat tumbuh (ansimidol danpaklobutrazol) serta intensitas cahaya digunakan untukkeragaan planlet. Hasil penelitian menunjukkan bahwaeksplan stevia yang ditumbuhkan pada medium MS tanpa zatpengatur tumbuh menghasilkan tunas paling tinggi (4,5 cm)dengan dua tunas per eksplan. Multiplikasi tunas terbaikdiperoleh pada medium dengan BA 1,13 mg/L yangdikombinasikan dengan IAA 0,35 mg/L yang menghasilkan4,5 tunas dan 11,9 ruas per eksplan awal. Konsentrasiansimidol dan paklobutrazol berpengaruh nyata terhadappertumbuhan dan keragaan planlet stevia. Meningkatnyakonsentrasi ansimidol dan paklobutrazol menurunkan tinggiplanlet dan bobot basah biomassa, tetapi meningkatkandiameter batang. Paklobutrazol pada konsentrasi 0,1 mg/Lmerupakan perlakuan terbaik untuk meningkatkan keragaanplanlet stevia. Intensitas cahaya pada 20 µmol/m 2 /detikmemberikan keragaan planlet yang lebih baik dibandingkanintensitas cahaya yang lain. Dapat disimpulkan bahwamultiplikasi tunas stevia sebaiknya dilakukan pada mediumMS ditambah BA 1,13 mg/L + IAA 0,35 mg/L dan keragaanplanlet dapat ditingkatkan dengan menanam planlet padamedium MS ditambah paklobutrazol 0,1 mg/L di bawahlampu fluoresen dengan intensitas cahaya 20 µmol/m 2 /detik.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4090
Author(s):  
Morteza Sheikhalipour ◽  
Behrooz Esmaielpour ◽  
Gholamreza Gohari ◽  
Maryam Haghighi ◽  
Hessam Jafari ◽  
...  

High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs–Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L−1) and Cs–Se NPs (0, 10 and 20 mg L−1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L−1) and Cs–Se NPs (20 mg L−1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L−1) and Cs–Se NPs (20 mg L−1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L−1 TiO2 NPs and 20 mg L−1 Cs–Se could be considered as promising agents in combating high levels of salinity in the case of stevia.


2021 ◽  
Vol 11 (8) ◽  
pp. 3634
Author(s):  
Teresa Leszczyńska ◽  
Barbara Piekło ◽  
Aneta Kopeć ◽  
Benno F. Zimmermann

This study compares the content of basic nutrients (proteins, fats, digestible carbohydrates, dietary fiber and ash), steviol glycosides, selected antioxidants (vitamin C, total polyphenols) and antioxidant activity in dried leaves of Stevia rebaudiana Bertoni cultivated in Poland, Paraguay and Brazil and available in the direct sale. The basic chemical composition was determined by standard AOAC (Association of Official Analytical Chemists) methods. Content of steviol glycosides was determined by the UHPLC-UV chromatographic method. Total polyphenols content was expressed as gallic acid equivalent (GAE) and catechins equivalent (CE). Antioxidant activity was measured as ABTS●+ free radical scavenging activity. Dried leaves of S. rebaudiana grown in Poland had significantly higher contents of dietary fiber, and lower protein and ash content, compared to those derived from Paraguay and Brazil. The former had, however, considerably higher contents of total steviol glycosides, stevioside and rebaudioside D, compared to the remaining two plants. In the Paraguay-derived dried leaves, the content of rebaudioside A, C, E and rubusoside was found to be significantly lower. Dried leaves of S. rebaudiana Bertoni, cultivated in Poland, contained substantially more vitamin C and a similar content of total polyphenols, compared to those from Brazil and Paraguay. The examined material from Brazil and Paraguay plantations showed similar antioxidant activity, while that obtained from Polish cultivation was characterized by a significantly lower value of this parameter.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Reza Azadi Gonbad ◽  
Uma Rani Sinniah ◽  
Maheran Abdul Aziz ◽  
Rosfarizan Mohamad

The use ofin vitroculture has been accepted as an efficient technique for clonal propagation of many woody plants. In the present research, we report the results of a number of experiments aimed at optimizing micropropagation protocol for tea (Camellia sinensis(L.) O. Kuntze) (clone Iran 100) using nodal segments as the explant. The effect of different combinations and concentrations of plant growth regulators (PGR) (BAP, TDZ, GA3) on shoot multiplication and elongation was assessed. The influence of exposure to IBA in liquid form prior to transfer to solid media on rooting of tea microshoots was investigated. The results of this study showed that the best treatment for nodal segment multiplication in terms of the number of shoot per explant and shoot elongation was obtained using 3 mg/L BAP in combination with 0.5 mg/L GA3. TDZ was found to be inappropriate for multiplication of tea clone Iran 100 as it resulted in hyperhydricity especially at concentrations higher than 0.05 mg/L. Healthy shoots treated with 300 mg/L IBA for 30 min followed by transfer to 1/2 strength MS medium devoid of PGR resulted in 72.3% of shoots producing roots and upon transferring them to acclimatization chamber 65% survival was obtained prior to field transfer.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Juan Pablo Quintal Martínez ◽  
Jorge Carlos Ruiz Ruiz ◽  
Maira Rubí Segura Campos

This study was oriented towards encapsulation of S. rebaudiana extract and the study of its release kinetics. The desired encapsulation was achieved by the ionotropic gelation method using sodium alginate and inulin of polymeric constituents. Characterization of the capsules was performed by micrometric properties, encapsulation efficiency, in vitro extract release analysis, and biological activity of released extract. The in vitro release profiles from different capsules were applied on different kinetic models. The prepared capsules were found spherical in shape with diameters ranging from 2.07 to 2.63 mm, having the encapsulation efficiencies of 43.77% and 56.53% for phenolic compounds and steviol glycosides, respectively. The best-fit model with the highest correlation coefficient was observed in the Ritger–Peppas model, indicating diffusion controlled principle. The release exponent n value obtained from the Korsmeyer–Peppas model varied between 0.2273 and 1.1719, confirming that the mechanism of S. rebaudiana extract bioactive compounds release was diffusion controlled.


Sign in / Sign up

Export Citation Format

Share Document