COMPUTER SIMULATION USING MSC ADAMS

2020 ◽  
Vol 5 (3) ◽  
pp. 41-46
Author(s):  
Darina Hroncová ◽  
Ingrid Delyová

The goal of the presented paper is to compile a two-link model of manipulator and control the movement of the basket mounted at its end-effector. Authors focus on using MSC Adams in simulation of the motion of a two-link manipulator model. Attention is paid to kinematic and dynamic analysis of the manipulator, its modelling and control. The capability of MSC Adams Control Toolkit is used to design a control system which keeps the basket of the endeffector in horizontal position. Finally, the results obtained by computer simulation of the model are evaluated.

1982 ◽  
Vol 104 (1) ◽  
pp. 41-48
Author(s):  
C. R. Burrows

An assessment is made of a surveillance-radar control system designed to provide a sector-search capability and continuous control of antenna speed without unwanted torque-reaction on the supporting mast. These objectives are attained by utilizing regenerative braking, and control is exercised through Perbury CVTs. A detailed analysis of the system is given. The models derived for the Perbury CVTs supplement the qualitative data contained in earlier papers. Some results from a computer simulation are presented. Although the paper is concerned with a particular problem, the analysis of the CVTs, and the concept of using energy transfer to control large inertial loads, are of more general interest.


2013 ◽  
Vol 740 ◽  
pp. 146-151
Author(s):  
Bin Cheng Li ◽  
Xiao Fan Li

In the paper, parallel mechanism is applied to Marine stable platform field. The integrated model,which consists of mechanical system, hydraulic driving system and control system, is established by the software of dynamic analysis of mechanical system (Adams) and Matlab/Simulink. The simulation result shows the decent capability of hydraulic cylinders length tracking, however further improvement can be made. This research provides valuable and fundamental knowledge for the system design and optimization.


SIMULATION ◽  
1967 ◽  
Vol 8 (5) ◽  
pp. 283-293
Author(s):  
Tom F. Noble

This paper describes the highlights of two and one-half years of computer simulation effort on the deep submer gence vehicles Trieste II (Trieste), NR-1, and Deep Sub mergence Rescue Vehicle (DSRV). The work, which is still in progress, is being performed by Sperry Gyroscope Com pany under Navy and company-funded programs. Introductory material of the paper presents the simula tion program objectives, outlines the simulation facilities, and gives an overall simulation block diagram. The com puter simulations are being used in control-system, hull, and force-effector design efforts for the development of operational doctrine, as a tool for human engineering as sessment of displays, control input devices, and console layouts, and as a pilot training aid. Basic computation equipment consists of a hybridiza tion between an Electronic Associates 231-R analog com puter and an Ambilog Model 200 digital computer. Major facilities used to supplement these computers are a two- degree-of-freedom cab containing console mockup, pilot's control station, and an electronic flying-spot-scanner tele vision display generator. Major elements characterized in the simulations are six- degree-of-freedom boat dynamics; coordinate transforma tions for television display cues and real-world television pictures; various effectors, actuators, and sensors; and control computer equations. The body of the paper gives details on the use of the computer simulation in deep submergence craft design work. The design stages are broken down as: statement of design criteria, analysis of system parts, analysis of com plete system, synthesis of system design, fabrication of system hardware, test and evaluation, and improvement of design. Unique hull, effector, actuator, and control-system design problems encountered during the two-and-one- half-year simulation study are outlined.. This paper on simulation is concluded with a summary which indicates the need for highly integrated displays, control input devices, and control computers for deep sea craft.


2018 ◽  
Vol 883 ◽  
pp. 30-36 ◽  
Author(s):  
Yunn Lin Hwang ◽  
Jung Kuang Cheng ◽  
Van Thuan Truong

Robot simulation has developed quickly in recent decades. Along with the development of computer science, a lot of simulation soft-wares have been created to perform many purposes such as studying kinematic, dynamic, and off-line program to avoid obstacle on manipulator robots. The main objective of this study is therefore to analyze kinematic, dynamic characteristics of an R-R robotic manipulator in order to control this robot. Newton-Euler method was used to calculate the torque acting on each joint of the robot. Then, a numerical model of the robot was established by a multi-body dynamics software to compare with the results obtained by Newton-Euler theory. After that, a feed-forward control system was created by RecurDyn/CoLink to control the end-effector of the robot following a desired trajectory. The results showed that this research can be used for efficient simulation of structural kinematics, dynamics as well as control of the real manipulator robot with the robot structure in a virtual environment.


2011 ◽  
Vol 130-134 ◽  
pp. 347-352
Author(s):  
Jing Tao Lei

This paper presented model-based integrated design technology for configuration design of modular 3-PRS parallel robot. The kinematics screws matrix and constraint screws matrix of the end effector were obtained based on screw theory, the constraints of the end effector were analyzed and the degree of freedom of the robot can be determined. The forward kinematics of the parallel robot was analyzed according to the geometric relationship of a kinematics chain. Three-dimension solid model of the parallel robot was designed. Afterwards, the co-simulation of the mechanical and control system of the parallel robot was studied by applying virtual prototype technology to optimize the parameters of mechanical structure and control system. The simulation results of kinematics and dynamics can be obtained, which will offer basis for developing the prototype system.


2000 ◽  
Author(s):  
Dean H. Kim ◽  
Martin J. Morris ◽  
Greg M. Leja ◽  
Tyler R. Scarlata ◽  
Stephen R. Wylie

Abstract This paper describes the dynamic modeling and control system development to maintain a constant air speed in the test section of a laboratory wind tunnel. The previous manual operation procedure of this wind tunnel during a typical test with multiple operating conditions had been tedious and awkward at best. The wind tunnel system dynamics have been accurately characterized using single-input, single output (SISO) experimental step responses for specified operating conditions. The implementation of the subsequent control system has improved performance such that this wind tunnel system now can be used like a commercial wind tunnel and both as a classroom instruction tool and as a research tool. This work has been performed by an undergraduate team for the two-semester capstone design course for the Mechanical Engineering Department at Bradley University. This project incorporates many aspects of a mechanical engineer’s education such as mechanical design, sensor selection, software mastery, dynamic analysis, and feedback control implementation. This project also crosses traditional mechanical engineering boundaries because of its connection to the fields of fluid dynamics, system dynamics, and control systems.


Sign in / Sign up

Export Citation Format

Share Document