scholarly journals Calculated assessment of the impact of geometric deviations from the design on the parameters of mechanical safety of building metal structures within the framework of scientific and technical support for construction

Author(s):  
Alexander M. Belostotsky ◽  
Dmitry S. Dmitriev ◽  
Sergey O. Petryashev ◽  
Tatyana E. Nagibovich

An important part of scientific and technical support of civil engineering facilities at a construction stage - evaluation of influence of fluctuations from a designed geometry onto mechanical safety parameters of load-bearing metal structures - is considered. A multi-tier structure (industrial frame tower) is employed to demonstrate main features of such an assessment. Given is an approach to an analysis of as-built documentation and to a choice of most significant fluctuations of structural metal elements from a designed geometry. Effect of erection sequence being taken into consideration, the so-called genetic non-linearity, during computational estimation of a stress-strain state of metal structures mounted with deviations from their design positions is investigated. Results of static and dynamic analyses of designed and as-built (with geometry fluctuations taken into consideration) models of the multi-level industrial frame tower are obtained and compared with each other. Basing on these results, guidelines for computational assessment of effects of fluctuations from a designed geometry onto mechanical safety parameters of similar frame systems are formulated.

Author(s):  
S.E. Rudov ◽  
◽  
V.Ya. Shapiro ◽  
O.I. Grigoreva ◽  
I.V. Grigorev ◽  
...  

In the Russian Federation logging operations are traditionally carried out in winter. This is due to the predominance of areas with swamped and water-logged (class III and IV) soils in the forest fund, where work of forestry equipment is difficult, and sometimes impossible in the warm season. The work of logging companies in the forests of the cryolithozone, characterized by a sharply continental climate, with severe frosts in winter, is hampered by the fact that forest machines are not recommended to operate at temperatures below –40 °C due to the high probability of breaking of metal structures and hydraulic system. At the same time, in the warm season, most of the cutting areas on cryosolic soils become difficult to pass for heavy forest machines. It turns out that the convenient period for logging in the forests of the cryolithozone is quite small. This results in the need of work in the so-called off-season period, when the air temperature becomes positive, and the thawing processes of the soil top layer begin. The same applies to the logging companies not operating in the conditions of cryosolic soils, for instance, in the Leningrad, Novgorod, Pskov, Vologda regions, etc. The observed climate warming has led to a significant reduction in the sustained period of winter logging. Frequent temperature transitions around 0 °C in winter, autumn and spring necessitate to work during the off-season too, while cutting areas thaw. In bad seasonal and climatic conditions, which primarily include off-season periods in general and permafrost in particular, it is very difficult to take into account in mathematical models features of soil freezing and thawing and their effect on the destruction nature. The article shows that the development of long-term predictive models of indicators of cyclic interaction between the skidding system and forest soil in adverse climatic conditions of off-season logging operations in order to improve their reliability requires rapid adjustment of the calculated parameters based on the actual experimental data at a given step of the cycles.


Author(s):  
Apangshu Das ◽  
Sambhu Nath Pradhan

Background: Output polarity of the sub-function is generally considered to reduce the area and power of a circuit at the two-level realization. Along with area and power, the power-density is also one of the significant parameter which needs to be consider, because power-density directly converges to circuit temperature. More than 50% of the modern day integrated circuits are damaged due to excessive overheating. Methods: This work demonstrates the impact of efficient power density based logic synthesis (in the form of suitable polarity selection of sub-function of Programmable Logic Arrays (PLAs) for its multilevel realization) for the reduction of temperature. Two-level PLA optimization using output polarity selection is considered first and compared with other existing techniques and then And-Invert Graphs (AIG) based multi-level realization has been considered to overcome the redundant solution generated in two-level synthesis. AIG nodes and associated power dissipation can be reduced by rewriting, refactoring and balancing technique. Reduction of nodes leads to the reduction of the area but on the contrary increases power and power density of the circuit. A meta-heuristic search approach i.e., Nondominated Sorting Genetic Algorithm-II (NSGA-II) is proposed to select the suitable output polarity of PLA sub-functions for its optimal realization. Results: Best power density based solution saves up to 8.29% power density compared to ‘espresso – dopo’ based solutions. Around 9.57% saving in area and 9.67% saving in power (switching activity) are obtained with respect to ‘espresso’ based solution using NSGA-II. Conclusion: Suitable output polarity realized circuit is converted into multi-level AIG structure and synthesized to overcome the redundant solution at the two-level circuit. It is observed that with the increase in power density, the temperature of a particular circuit is also increases.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 461 ◽  
Author(s):  
Chenchen Xie ◽  
Xi Li ◽  
Houpeng Chen ◽  
Yang Li ◽  
Yuanguang Liu ◽  
...  

Multi-level cell (MLC) phase change memory (PCM) can not only effectively multiply the memory capacity while maintaining the cell area, but also has infinite potential in the application of the artificial neural network. The write and verify scheme is usually adopted to reduce the impact of device-to-device variability at the expense of a greater operation time and more power consumption. This paper proposes a novel write operation for multi-level cell phase change memory: Programmable ramp-down current pulses are utilized to program the RESET initialized memory cells to the expected resistance levels. In addition, a fully differential read circuit with an optional reference current source is employed to complete the readout operation. Eventually, a 2-bit/cell phase change memory chip is presented with a more efficient write operation of a single current pulse and a read access time of 65 ns. Some experiments are implemented to demonstrate the resistance distribution and the drift.


2013 ◽  
Vol 834-836 ◽  
pp. 2045-2048
Author(s):  
Xiao Ning Qu

The Environmental performance auditing is one professional audit that auditing the environmental performance of engineering project. We construct a multi-level auditing network in the whole process of project. That network can be divided into government audit, social audit and internal audit. And with which we predict, evaluate and control the impact on environmental effectively.


2018 ◽  
Vol 23 (4) ◽  
pp. 351-376 ◽  
Author(s):  
Yiyi Fan ◽  
Mark Stevenson

Purpose This paper aims to investigate how supply chain risks can be identified in both collaborative and adversarial buyer–supplier relationships (BSRs). Design/methodology/approach This research includes a multiple-case study involving ten Chinese manufacturers with two informants per organisation. Data have been interpreted from a multi-level social capital perspective (i.e. from both an individual and organisational level), supplemented by signalling theory. Findings Buyers use different risk identification strategies or apply the same strategy in different ways according to the BSR type. The impact of organisational social capital on risk identification is contingent upon the degree to which individual social capital is deployed in a way that benefits an individual’s own agenda versus that of the organisation. Signalling theory generally complements social capital theory and helps further understand how buyers can identify risks, especially in adversarial BSRs, e.g. by using indirect signals from suppliers or other supply chain actors to “read between the lines” and anticipate risks. Research limitations/implications Data collection is focussed on China and is from the buyer side only. Future research could explore other contexts and include the supplier perspective. Practical implications The types of relationships that are developed by buyers with their supply chain partners at an organisational and an individual level have implications for risk exposure and how risks can be identified. The multi-level analysis highlights how strategies such as employee rotation and retention can be deployed to support risk identification. Originality/value Much of the extant literature on supply chain risk management is focussed on risk mitigation, whereas risk identification is under-represented. A unique case-based insight is provided into risk identification in different types of BSRs by using a multi-level social capital approach complemented by signalling theory.


Author(s):  
Ahmad Moghrabi ◽  
David Raymond Novog

The Canadian pressure-tube super critical water-cooled reactor (PT-SCWR) is an advanced generation IV reactor concept which is considered as an evolution of the conventional Canada Deuterium Uranium (CANDU) reactor that includes both pressure tubes and a low temperature and pressure heavy water moderator. The Canadian PT-SCWR fuel assembly utilizes a plutonium and thorium fuel mixture with supercritical light water coolant flowing through the high-efficiency re-entrance channel (HERC). In this work, the impact of fuel depletion on the evolution of lattice physics phenomena was investigated starting from fresh fuel to burnup conditions (25 MW d kg−1 [HM]) through sensitivity and uncertainty analyses using the lattice physics modules in standardized computer analysis for licensing evaluation (SCALE). Given the evolution of key phenomena such as void reactivity in traditional CANDU reactors with burnup, this study focuses on the impact of fission products, 233U breeding, and minor actinides on fuel performance. The work shows that the most significant change in fuel properties with burnup is the depletion of fission isotopes of Pu and the buildup of high-neutron cross section fission products, resulting in a decrease in cell k∞ with burnup as expected. Other impacts such as the presence of protactinium and uranium-233 are also discussed. When the feedback coefficients are assessed in terms of reactivity, there is considerable variation as a function of fuel depletion; however, when assessed as Δk (without normalization to the reference reactivity which changes with burnup), the net changes are almost invariant with depletion.


Sign in / Sign up

Export Citation Format

Share Document