scholarly journals A Microtremor Survey to Identify Seismic Vulnerability Around Banda Aceh Using HVSR Analysis

Elkawnie ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 342
Author(s):  
Andrean Vesalius Hasiholan Simanjuntak ◽  
Yusran Asnawi ◽  
Muksin Umar ◽  
Syamsul Rizal ◽  
Muhammad Syukri

Abstract: Banda Aceh can be categorized as an earthquake-prone city because of the existence of two active segments namely Seulimeum and Aceh. Both segments are considered to provide great potential damage in the future. In this article, we conduct a microtremor survey in the Peukan Bada, sub-part of Banda Aceh city, to learn the vulnerability level and support disaster mitigation plan. A total of 20 sites were measured with a seismometer to record the seismic waveform. The waveform was recorded in 45 minutes with a sampling rate of 100 sps and has analyzed using the horizontal-vertical spectrum ratio (HVSR). The results obtained are the dominant parameters, such as the period with a range of 0 – 0.5s, frequency with a range of 0 – 6 Hz, seismicity vulnerability index with a range of 0.1 – 0.5. The result was relevant to the geological conditions of Peukan Bada that dominated by alluvial rocks and mud sediments. The level of vulnerability (Kg > 1.0) obtained is quite high and proportional to the soil type that can amplify the seismic waveform. The results obtained are expected to be a supporting study of disaster mitigation and understand the geological conditions of Banda Aceh in terms of seismic vulnerability.Abstrak: Banda Aceh dapat dikategorikan sebagai kota rawan gempa karena adanya dua segmen aktif yaitu Seulimeum dan Aceh. Kedua segmen tersebut bisa memberikan potensi kerusakan yang besar di masa mendatang. Pada tulisan ini, kami melakukan survei mikrotremor di Kecamatan Peukan Bada, salah satu sub-wilayah kota Banda Aceh, untuk mempelajari tingkat kerentanan dan mendukung rencana mitigasi bencana. Sebanyak 20 lokasi diukur dengan seismometer untuk merekam bentuk gelombang seismik. Gelombang direkam selama 45 menit dengan jumlah sampel 100 sps dan dianalisis menggunakan horizontal-vertical spectrum ratio (HVSR). Hasil yang diperoleh adalah parameter yang dominan yaitu periode dengan rentang 0 – 0,5s, frekuensi dengan range 0 - 6 Hz, indeks kerentanan kegempaan dengan rentang 0,1 – 0,5. Hasil tersebut relevan dengan kondisi geologi Peukan Bada yang didominasi oleh batuan aluvial dan endapan lumpur. Tingkat kerentanan (Kg > 1,0) yang diperoleh cukup tinggi dan sebanding dengan jenis tanah yang dapat memperbesar gelombang seismik. Hasil yang diperoleh diharapkan dapat menjadi pendukung kajian mitigasi bencana dan memahami kondisi geologi Banda Aceh dari segi kerentanan seismik.

2021 ◽  
Vol 2 (1) ◽  
pp. 20-23
Author(s):  
Alen Fezi Loveka ◽  
Henny Johan ◽  
Rendy W. Wardana

Muara Bangkahulu District is one of Bengkulu Province Subdistricts, which is used as a place for higher education service centers, government office centers, and community residential areas. Muara Bangkahulu has the risk of being affected by an earthquake caused by its geological conditions. To avoid the potential damage due to earthquake, the PGA parameters, seismic vulnerability index, ground shear strain, and thickness of sediment layer (h) were analyzed in Muara Bangkahulu District as an effort to mitigate earthquakes. The purpose of this study is to describe the potential damage caused by the earthquake in Muara Bangkahulu District as a disaster mitigation effort. This research was a qualitative descriptive study using the literature study method. The results of the literature study which showed the value of PGA produced between 184.22 gal to 532.92 gal. Distribution of seismic vulnerability index values between 0.56 to 7.95. Distribution of ground shear strain values between 5.14 x10-5 to 7.42 x10-4. The thickness of the sediment layer (h) ranged from 8.13 meters to 61.31 meters. The largest PGA, IKS, GSS and h values are in Kualo Beach which is estimated to have a high level of risk for earthquake disasters with a correlation more than 74%. Thus, it can be concluded that the vicinity of Kualo Beach is the most potential and prone to earthquake damage.


2020 ◽  
Vol 17 (7) ◽  
pp. 3153-3159
Author(s):  
Deassy Siska ◽  
Herman Fithra ◽  
Nova Purnama Lisa ◽  
Bustami ◽  
Sofyan ◽  
...  

Microtremor is a weak vibration on the surface of the earth that takes place continuously due to sources of vibration such as earthquakes, human activities, industry and traffic (Daryono, 2009). Microtremor data measured obtained 3 signals whose components are vertical (Up and Down), horizontal (North-South), and horizontal (East-West) components. After the signal is obtained it can then be analyzed using the HVSR method and the dominant frequency and amplification values are obtained. The HVSR method compares the spectrum ratio of the horizontal component microtremor signal to its vertical component (Nakamura, 1989). Lhokseumawe City is administratively included in the Province of Nangroe Aceh Darussalam (NAD). In 2004 there was an earthquake of magnitude 9.2 on the Richter Scale in the southern waters of the city of Banda Aceh, which caused a devastating Tsunami. In this event many people lost about 250 thousand lives and lost property that is not small in number (Logan, 2014) Due to the active regional tectonic pattern, the NAD region is a disaster-prone region. The tectonic area of NAD is strongly influenced by the subduction area between the Indian-Australian oceanic plate (Indian Australian Plate) against the European-Asian continental plate (Eurasian plate). The tectonic pattern greatly influences the geological conditions in the waters of the study area. The purpose of this research is to provide preliminary knowledge in the use of microtremors for mapping seismic microzonation. This microzonation mapping is needed for earthquake disaster mitigation purposes, microtremor data analysis can provide information on the value of a place that is very important for earthquake resistant building planning. Building structures that have the same value as the land value will experience resonance in the event of an earthquake. Then the last is the Seismic Vulnerability Index Mapping which is useful for predicting unconsolidated sediment zones at the ground surface when an earthquake occurs, so that further studies for earthquake prone areas can be carried out. The stages of the research method carried out are measuring field data which is divided into several measurement points in each district in the city of Lhokseumawe. At each measurement point, a three-component seismometer is installed to obtain the results of the soil’s vulnerability in the area. Each measurement data is observed for 30 minutes at each point. The results of this study are the existence of areas that are very susceptible to seismic namely Ujung blang and Banda Sakti villages with seismic vulnerability index values (Kg) ranging from 0 cm/s2 -30542.32 cm/s2 The highest value is located at Ujong Blang villages which is 10397.1 cm/s2 This is closely related to the total amount of damage to buildings in Lhokseumawe City due to the 2004 earthquake.


2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Rahmat Setyo Yuliatmoko

The Tasikmalaya M 7.3 earthquake on September 2, 2009 had an impact on Garut, damaged infrastructure and claimed many lives. From the search results there were five areas that were severely damaged by tectonic earthquake shocks, which included Pemeungpeuk, Cisompet, Cikelet, Peundeuy and Banjarwangi Subdistricts, so that earthquake mitigation measures were needed. One of the mitigations that can research how the impact is if the potential for earthquake disasters occur below the southern surface of Java. The final objective of this research is to map disaster-prone zones in Tarogong Kaler, Tarogong Kidul, Garut City, and Karang Pawitan, Garut Subdistrict, based on dominant frequency values, Vs30, seismic vulnerability indexes, and GSS (Ground Shear Strains) so that they can know the land movement that is. Retrieval of data in this study by measuring geophysicaly methods in the field. Processing data using HVSR (Horizontal to Vertical Spectra Ratio) method, then mapped with ArcGis to interpret the zoning of the study area. Based on the research, we known that the dominant frequency distribution value is between 1-5.2 Hz. The seismic vulnerability index values calculated the study area are between 3 – 45, GSS values in the study area between 3 ×10-4 - 42×10-4. By looking at the spatial distribution of the values of f0, Kg and GSS the areas of Karangmulya, Jatiasih, Sidanggalih and Godog villages are types of young volcanic sediments classified as soft soils that are easily to wave amplification and earthquake vibrations, so that they are easily damaged during large earthquakes. in this region qualify as earthquake resistant buildings to minimize damage and losses, while Sukabakti, Kersamenak, Sukajaya, and Mekargalih villages in the west with the geological conditions of the surrounding area which is hard land so that it will be safer when an earthquake occurs.


2021 ◽  
Vol 936 (1) ◽  
pp. 012026
Author(s):  
Juan Pandu Gya Nur Rochman ◽  
Amien Widodo ◽  
Dwa Desa Warnana ◽  
Wien Lestari ◽  
Mariyanto ◽  
...  

Abstract Earthquake can be caused by several things, one of which is due to an active fault. To mitigate earthquake disasters that can be caused by the Probolinggo Fault, measurement of the microtremor geophysical method is carried out to analyze seismic vulnerability. In this study, the microtremor measurements were carried out on 30 measurement points. The data obtained from measurements are then processed using EasyHVSR software to obtain natural frequency (f0) and natural amplification (A0) values. This value is then used to create a microtremor microzonation map, which is seismic vulnerability index, based on natural frequency and amplification . it founded that low natural frequency mostly founded on eastern of measurement area, caused by thick sedimentary from Lamongan volcanic. High amplification mostly founded from middle to western area, and high seismic vulnerability index founded on western of measurement area, include Maron and Krucil Sub-district. It means seismic wave can very destructive on those area.


2015 ◽  
Vol 12 (2) ◽  
Author(s):  
Muhtar . ◽  
Arief Alihudien

INDEK KERENTANAN DAN AMPLIFIKASI  TANAH AKIBAT GEMPA DI  WILAYAH UNIVERSITAS MUHAMMADIYAH JEMBERVulnerability and Soil Amplification Index Due to Earthquake in The University Muhammadiyah JemberMuhtar1 & Arief Alihudien21Jurusan Teknik Sipil Fakultas Teknik – Universitas Muhammadiyah Jember2Jurusan Teknik Sipil Fakultas Teknik – Universitas Muhammadiyah JemberAlamat Korespondensi : Perum Taman Bambu B-01 Jember 68124Email : 1)[email protected] phenomena of earthquakes until now could not be predicted and the exact time it happened. Earthquake danger can not be avoided but its impact can be reduced through assessment activities characteristic earthquakes in a region that will be applied in the selection of methods and policies for disaster risk management. Residential areas adjacent to the source of the earthquake is an earthquake-prone area so, therefore it is necessary strategic steps to protect the public and disaster mitigation measures are an attempt to reduce or minimize the impact of loss or damage that may be caused by the disaster. The study was conducted to provide information to the seismic vulnerability using multicriteria analysis of conditions in the region include University of Muhammadiyah Jember dominant period land values   and the value of the amplification factor. The experiment was conducted using subsurface observation with mikrotremoR. From the results of geological studies research area is the basic constituent of igneous rocks such as tuff Argopuro. The results showed that the natural frequency of the soil and soil amplification is at 2,692 and 4,625 Hz. whereas soil vulnerability index value is equal to 7,946.Key Words : seismic, vulnerability, indexAbstrakFenomena alam gempa bumi sampai saat ini belum bisa diprediksi dan waktu yang tepat itu terjadi . Bahaya gempa tidak dapat dihindari namun dampaknya dapat dikurangi melalui kegiatan penilaian gempa bumi karakteristik di daerah yang akan diterapkan dalam pemilihan metode dan kebijakan untuk manajemen risiko bencana . Daerah pemukiman yang berdekatan dengan sumber gempa adalah daerah rawan gempa sehingga , oleh karena itu langkah-langkah strategis yang diperlukan untuk melindungi tindakan publik dan mitigasi bencana merupakan upaya untuk mengurangi atau meminimalkan dampak kerugian atau kerusakan yang mungkin disebabkan oleh bencana. Penelitian ini dilakukan untuk memberikan informasi kepada kerentanan seismik menggunakan analisis multikriteria kondisi di kawasan ini mencakup Universitas Muhammadiyah Jember nilai tanah periode dominan dan nilai faktor amplifikasi . Penelitian dilakukan dengan menggunakan observasi bawah permukaan dengan mikrotremoR. Dari hasil daerah penelitian studi geologi adalah konstituen dasar batuan beku seperti tuf Argopuro . Hasil penelitian menunjukkan bahwa frekuensi alami amplifikasi tanah dan tanah di 2,692 dan 4.625 Hz . sedangkan nilai indeks kerentanan tanah sama dengan 7946 .Kata Kunci : seismik , kerentanan , indeks


Author(s):  
Rusman ◽  
Asep Rohman

This research was motivated still many natural disasters in Indonesia. Geological disasters would always be an important issue in the Indonesian Nation as a consequence Indonesia's geological conditions unique region, rich in natural resources but full of potential disasters. Disaster handling required the participation of all components of the nation led to the importance of the massive dissemination of disaster information to all levels of society. The role of the community in the society was considered to be very strategic as agents of change. Unfortunately, the competence of members of the community who were still considered weak in disaster mitigation and counseling techniques became constraints the achievement of objectives disaster-conscious society. Increased competence was absolutely necessary and training could be selected as an option to improve competence. Research conducted using the method of research and development which was divided into three main stages. First, the needs analysis as a preliminary study, the second, the development of a model curriculum, and the third trials of the curriculum model to determine the effectiveness in improving the competence fields of geological disaster mitigation. This study was conducted to determine the curriculum development process proper training to improve competence in community-based geological disaster mitigation. The results showed that the model developed training curriculum based on the needs analysis proven effective in improving participants's competence to do counseling disaster mitigation. Pre-post test results showed an increase in the cognitive aspects of participants in Trial I and Trial II. Significant improvement occurred on the competence of counsel which showed a success rate of Trial II in improving the competence of counsel practice of training participants. Factors supporting the development of a model curriculum Extension Disaster Mitigation Training Community-Based Ground Motion  were: (a) the competence of lecturers geological disaster mitigation; (B) the interests of members of community volunteers; and (c) the support of policy makers, while the factors that impeded the development of curriculum models were limited clump of competence training in geology, low educational background and knowledge of the geology and ground motion, and limited time.


2021 ◽  
Vol 331 ◽  
pp. 07005
Author(s):  
Rio Khoirudin Apriyadi ◽  
Sobar Sutisna ◽  
Lasmono ◽  
Riskina Tri Januarti

Earthquake and tsunami disasters always bring negative impacts and losses for humans. The high frequency of earthquake disasters in Sulawesi and the massive impact of destruction and damage to infrastructure, loss of homes and property, and death of people are partly due to the lack of knowledge of this potential disaster by the surrounding community. Therefore, it is necessary to study the potential for earthquake and tsunami disasters on Sulawesi Island, and Lesson Learned about the Earthquake Disaster that has occurred in past. This study uses a qualitative method with a descriptive analysis design of secondary data obtained through a comprehensive literature review. The results showed that Sulawesi Island has a high potential for earthquake disasters, which is in the historical records of disasters, some of these earthquakes were accompanied by tsunami waves. The lesson that can be drawn from the earthquake in West Sulawesi is the potential for aftershocks after the opening earthquake and the main earthquake. In addition, the urgency of building earthquake-resistant housing structural mitigation is the key to safety during an earthquake. The post-earthquake recovery program in West Sulawesi requires further studies related to soil classification surveys, soil dominant periods, and soil seismic vulnerability index, as part of rebuilding a better and safer post-disaster area.


2019 ◽  
Vol 9 (2) ◽  
pp. 152
Author(s):  
Rahmat Setyo Yuliatmoko ◽  
Telly Kurniawan

The amount of stress released by an earthquake can be calculated with a stress drop, the stress ratio before and after an earthquake where the stress accumulated in a fault or a subduction zone is immediately released during an earthquake. The purpose of this research is to calculate the amount of stress drop in faults and subduction in Maluku and Halmahera and their variations and relate them to the geological conditions in the area so that the tectonic characteristics in the area can be identified. This research employed mathematical analysis and the Nelder Mead Simplex nonlinear inversion methods. The results show that Maluku and Halmahera are the area with complex tectonic conditions and large earthquake impacts. The Maluku sea earthquake generated a stress drop of 0.81 MPa with a reverse fault mechanism in the zone of subduction, while for the Halmahera earthquake the stress drop value was 52.72 MPa, a typical strike-slip mechanism in the fault zone. It can be concluded that there is a difference in the stress drop between the subduction and fault zones; the stress drop in the fault was greater than that in the subduction zone due to different rock structure and faulting mechanisms as well as differences in the move slip rate that plays a role in the process of holding out the stress on a rock. This information is very important to know the amount of pressure released from the earthquake which has a very large impact as part of disaster mitigation measures.


2012 ◽  
Vol 518-523 ◽  
pp. 3740-3743 ◽  
Author(s):  
Halfaya Fatma Zohra ◽  
Mahmoud Bensaibi ◽  
Davenne Luc

In south hemisphere regions mortality rates are closely related to infectious diseases that, to a large degree, depend on the quality of water consumed and on access to adequate sanitation services. A special attention must be paid to water quality particularly in case of an earthquake. Damage in this sector depends not only on the intensity of the disaster, but also on the vulnerability of buried pipelines. In this work, this vulnerability is studied through the use of a developed vulnerability index. This one allows a good classification and description of the seismic quality of the pipes taking into account the main parameters governing their vulnerability. A program including all informations that might be used was subsequently developed. The method was applied on the water network of Blida, a city in suburb of Algiers. The results obtained show that the established classification confirms the observed information in situ.


Sign in / Sign up

Export Citation Format

Share Document