Biological treatment technologies for dairy waste water

Author(s):  
G. NAGARAJU ◽  
R. SRIKANTH
1994 ◽  
Vol 30 (5) ◽  
pp. 87-95 ◽  
Author(s):  
Susan E. Murcott ◽  
Donald R. F. Harleman

In the past decade, the development of polymers and new chemical technologies has opened the way to using low doses of chemicals in wastewater treatment. “Chemical upgrading” (CU) is defined in this paper as an application of these chemical technologies to upgrade overloaded treatment systems (typically consisting of conventional primary plus biological treatment) in Central and Eastern European (CEE) countries. Although some of the chemical treatment technologies are proven ones in North America, Scandinavia, and Germany, a host of factors, for example, the variations in composition and degree of pollution, the type of technologies in use, the type and mix of industrial and domestic sewage, and the amount of surface water, had meant that the viability of using CU in CEE countries was unknown. This report describes the first jar tests of CU conducted during the summer of 1993. The experiments show CU's ability to improve wastewater treatment plant performance and to potentially assist in the significant problem of overloaded treatment plants. Increased removal of BOD, TSS, and P in the primary stage of treatment is obtained at overflow rates above 1.5 m/h, using reasonably priced, local sources of metal salts in concentrations of 25 to 50 mg/l without polymers.


2011 ◽  
Vol 63 (8) ◽  
pp. 1765-1771 ◽  
Author(s):  
S. Heubeck ◽  
R. M. de Vos ◽  
R. Craggs

The biological treatment of wastewater could yield high energy fuels such as methane and alcohols, however most conventional treatment systems do not recover this energy potential. With a simple model of the energy yields of various wastewater treatment technologies it is possible to demonstrate how minor shifts in technology selection can lead the industry from being identified as predominantly energy intensive, to being recognised as a source of energy resources. The future potential energy yield is estimated by applying energy yield factors to alternative use scenarios of the same wastewater loads. The method for identifying the energy potential of wastewater was demonstrated for the New Zealand wastewater sector, but can equally be applied to other countries or regions. The model suggests that by using technologies that maximise the recovery of energy from wastewater, the potential energy yield from this sector would be substantially increased (six fold for New Zealand).


2014 ◽  
Vol 487 ◽  
pp. 713-716 ◽  
Author(s):  
Yi Dan Zhou ◽  
Miao Sun ◽  
Li Juan Wang ◽  
Guan Nan Xi

The sources and composition of electroplating waste water are summarized. The common wastewater treatment technology, such as physical and chemical method, physic-chemical process, biological treatment and electrochemical method, and so on. Then the vision for the development of electroplating wastewater treatment technology is made.


2018 ◽  
Vol 13 (2) ◽  
pp. 37-43
Author(s):  
Hesham M Elkaramany ◽  
Amro A Elbaz ◽  
Amal N Mohamed ◽  
Alhassan H Sakr

Author(s):  
Rabia Nazir

Loading of water with multifarious pollutants has dwindled the availability of quality fresh water and put questions on reliability and efficacy of conventional water treatment technologies. Also the quest for developing robust and cost-effective methods with minimum impact on environment had driven the focus of researchers and technologists on new technological developments. Nanotechnology – better referred as Aqua-nanotechnology in this regard provides scientists a new dimension to deal this big problem with small particles having application in 1) water treatment, 2) remediation, and 3) pollution prevention. This chapter will focus on fabrication and use of advance nanomaterials categorized as nanoadsorbents and nanoatalysts for these three main areas. A range of materials exploited in this regard are single and mixed metal oxides and their composites with polymer, clay, carbon based materials etc. while keeping focus on technological developments taken place over the period in regard with treating water and waste water.


2001 ◽  
Vol 44 (8) ◽  
pp. 115-122 ◽  
Author(s):  
G. Zeeman ◽  
W. Sanders

Although they differ greatly in origin complex waste(water)s mainly consist of proteins, lipids, carbohydrates and sometimes lignin in addition. Hydrolysis is the first and generally rate-limiting step in the process of anaerobic digestion of particulate organic substrates. Hydrolysis of particulate polymers can be described by Surface Based Kinetics, but for use in practice the empirical first order relation is advised. Unlike the hydrolysis of protein and carbohydrate, lipid hydrolysis is hardly occurring in the absence of methanogenesis. The latter is probably a physical rather than a biological process and affects the choice for either a one- or a two-step (phase) anaerobic reactor. In the chain of collection and transport, complex wastes often become complex wastewaters simply because of dilution. Dilution not only changes the reactor technology to be applied but also complicates the post-treatment and possibilities for resource recovery. Combining concentrated with diluted waste streams will almost always end up in much more complicated treatment technologies.


2014 ◽  
Vol 7 ◽  
pp. ASWR.S17611 ◽  
Author(s):  
Muhsin A.J. Al-Mossawi

The middle and southern parts of Iraq are exposed to a series of serious drought-related problems. This is mainly linked to the absence of applied international law for water distribution in the Euphrates and Tigris rivers between Turkey, Syria, and Iraq, in addition to climate change and unawareness of the water resource problems for more than three decades. The Inter-Agency Information and Analysis Unit of the United Nations reported that water in the Tigris and Euphrates will decrease by up to 80% and 50%, respectively, by 2025. Therefore, water recycling would be an essential and inevitable sustainable approach under these circumstances. The biological treatment of sewage, industrial waste water, scientific laboratories effluent, and irrigation waters using compact units is described here to be involved in solving the water shortage in Iraq. The main indicators used to assess the efficiency of these units are chemical oxygen demand (COD), biological oxygen demand (BOD), total solved salts (TSS), and total fecal coliforms (TFC). These units have been approved to treat contaminated waters with 10-fold pollutants in a fifth of the time required as compared to other classical procedures. In conclusion, using these treatment units will be useful in tackling the problem of water shortage in Iraq and could potentially be the best control method to stop the spread of infectious diseases obtained from contaminated waters.


Sign in / Sign up

Export Citation Format

Share Document