scholarly journals Endophytic bacteria from root nodules of Ormosia macrocalyx with potential as plant growth promoters and antifungal activity

2018 ◽  
Vol 39 (6) ◽  
pp. 997-1005
Author(s):  
L. Hernández-Hernández ◽  
◽  
J.T. Coutiño-Megchun ◽  
C.I. Rincón-Molina ◽  
V.M. Ruíz-Valdiviezo ◽  
...  
2019 ◽  
pp. 1369-1374
Author(s):  
Clayton dos Santos Silva ◽  
Jockeliny Mayara Camara dos Santos ◽  
João Manoel da Silva ◽  
Felipe Alexandre Tenório ◽  
Erica Livea Ferreira Guedes Celestino ◽  
...  

Endophytic bacteria has been reported as plant growth promoters in various cultivated and uncultivated plants. Thus, the objective onf this study was to evaluate the potential of 21 endophytic bacterial isolated from leaves of passionfruit plants (Passiflora edulis Sims f. flavicarpa). In vitro antagonism, indole-3-acetic acid (IAA) production, gibberellins, cytokines and phosphate solubilization were also tested. In vitro antagonism was investigated using volatile metabolites detection by means of the overlapping dishes technique and direct confrontation. The production of IAA was evaluated by means of the colorimetric method with the absorbance reading of the optical density at O.D. (550nm). The phosphate solubilization was measured in a qualitative method by reading the solubilization halo diameter and the quantitative evaluation in liquid medium and reading of O.D. (450 nm). All bacterial isolates were able to inhibit the growth of Phytophthora sp. in both methods with values ranging from 50% to >90% inhibition (Skott-Knott, p ≤0 0.05). All the tested endophytic bacteria were also able to produce plant hormones. The phosphate solubilization was more than mean of the liquid medium. Thus, the studied endophytic bacterial isolates are suggested as potential plant growth promoters.


2014 ◽  
Vol 45 (4) ◽  
pp. 1333-1339 ◽  
Author(s):  
Julia del C. Martínez-Rodríguez ◽  
Marcela De la Mora-Amutio ◽  
Luis A. Plascencia-Correa ◽  
Esmeralda Audelo-Regalado ◽  
Francisco R. Guardado ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Nur Prihatiningsih ◽  
HERU ADI DJATMIKO ◽  
PUJI LESTARI

Abstract. Prihatiningsih N, Djatmiko HA, Lestari P. 2021. Endophytic bacteria associated with rice roots from suboptimal land as plant growth promoters. Biodiversitas 22: 432-437. Endophytic bacteria directly promoted plant growth and undirectly control the pathogens. This research was aimed to evaluate endophytic bacteria associated with rice root and their activity to promote plant growth and to control rice diseases. The study was conducted at the Laboratorium of Plant Protection and experimental farm Faculty of Agriculture Jenderal Soedirman University, from April to August 2020. The endophytic bacterial from suboptimal land were evaluated for promoting plant growth with soaking seed before seedling and spraying them at 10, 20, and 30 days after transplanting. The experiment was arranged with six replications and four treatments namely control (untreated endophytic bacteria) SM1 (endophytic bacteria isolate from Somagede); SB1 and SB3 (from Sumbang). Xanthomonas oyzae pv. oryzae was nature inoculation because the experiment location is in the endemic category of bacterial leaf blight. The variables observed were the plant growth components i.e plant height, number of tillers, number of panicles, incubation period, disease intensity, infection rate and effectiveness control. The result of this research shows that endophytic bacteria from Somagede (SM1) is the best to enhance plant height and number of tillers, and suppress disease intensity, and delay of incubation period.


2020 ◽  
Vol 31 (2) ◽  
pp. 97
Author(s):  
Tiwit Widowati ◽  
Rumella Simarmata ◽  
NFN Nuriyanah ◽  
Liseu Nurjanah ◽  
Sylvia J.R. Lekatompessy

<em><span>Endophytic bacteria colonize the plant tissue and contribute to the host plant's growth, development, and adaptation. This study aimed to examine the endophytic bacteria diversity associated with white turmeric (</span></em><span>Curcuma zedoaria</span><em><span>) and determine its activity as a plant growth promoter. White turmeric plants were obtained from the Indonesian Spices and Medicinal Crop Research Institute (Balittro). The isolation of endophytic bacteria from leaves, a primary and secondary rhizome of white turmeric using Nutrient Agar (NA) medium. Identification of the isolates was conducted based on 16S rDNA. The isolates were tested for their ability as a plant growth promoter and enzyme producer. Based on the morphological characteristic, 21 isolates were obtained from the primary rhizome (47.62%), secondary rhizome (19.05%), and leaves (33.33%), respectively. The sequencing result of 16S rDNA showed that the endophytic bacteria community consisted of four phyla, </span></em><span>β-proteobacteria</span><span>, γ-proteobacteria, Flavobacteria,<em> </em>Firmicutes,<em> which represented eight genera. Five isolates had several activities as a plant growth promoter, while six isolates had several enzymatic activities. Thirteen isolates had both activities, as a plant growth promoter and enzyme producer, while eight isolates only had single action. Endophytic bacteria potential as plant growth promoters can be used for supporting the cultivation of white turmeric plants.</em></span>


2021 ◽  
Vol 12 ◽  
Author(s):  
Shabiha Nudrat Hazarika ◽  
Kangkon Saikia ◽  
Atlanta Borah ◽  
Debajit Thakur

Endophytes are well-acknowledged inoculants to promote plant growth, and extensive research has been done in different plants. However, there is a lacuna about the endophytes associated with tea clones and their benefit to promote plant growth. The present study focuses on isolating and characterizing the beneficial endophytic bacteria (EnB) prevalent in commercially important tea clones cultivated in North Eastern India as plant growth promoters. Diversity of culturable EnB microbiome, in vitro traits for plant growth promotion (PGP), and applicability of potent isolates as bioinoculant for in vivo PGP abilities have been assessed in the present study. A total of 106 EnB identified as members of phyla Proteobacteria, Firmicutes, and Actinobacteria were related to 22 different genera and six major clusters. Regarding PGP traits, the percentage of isolates positive for the production of indole acetic acid, phosphate solubilization, nitrogen fixation siderophore, ammonia, and 1-aminocyclopropane-1-carboxylic acid deaminase production were 86.8, 28.3, 78.3, 30.2, 95.3, and 87.7, respectively. In total, 34.0, 52.8, and 17.0% of EnB showed notable production of hydrolytic enzymes like cellulase, protease, and amylase, respectively. Additionally, based on the bonitur score, the top two isolates K96 identified as Stenotrophomonas sp. and M45 identified as Pseudomonas sp. were evaluated for biofilm formation, motility, and in vivo plant growth promoting activity. Results suggested strong biofilm formation and motility in K96 and M45 which may attribute to the colonization of the strains in the plants. Further in vivo plant growth promotion experiment suggested sturdy efficacy of the K96 and M45 as plant growth promoters in nursery condition in commercial tea clones Tocklai vegetative (TV) TV22 and TV26. Thus, this study emphasizes the opportunity of commercialization of the selected isolates for sustainable development of tea and other crops.


Author(s):  
Diana Pacheco ◽  
João Cotas ◽  
Carolina P. Rocha ◽  
Glacio S. Araújo ◽  
Artur Figueirinha ◽  
...  

2019 ◽  
Vol 5 ◽  
pp. 38-56 ◽  
Author(s):  
Khulod A. Hemida ◽  
Amany M.M. Reyad

Salinity is one of the most dangerous environmental limiting factors of the plant productivity. A wide range of adaptation strategies is required to overcome salinity stress. However, such strategies seem to be long drawn and cost-intensive. It has been confirmed in recent years that plant growth promoting endophytes (PGPEs) that have the ability to further build a symbiotic association with their host to improve host plant salt tolerance. In our investigation try to improve plant salt tolerance using different species of endophytic bacteria. From the total eight endophytic bacterial species were isolated from root, stem, and leaf of Carthamustinctorius (safflower) plant, two isolates were capable of using 1-aminocyclopropane-1-carboxylic acid (ACC) as a sole nitrogen source, and they are of positive results for (ACC) deaminase activity and indole-3-acetic acid (IAA) production. The bacterial isolates were identified using 16S ribosomal DNA technique as Bacillus cereus and Bacillus aerius and had accession numbers MG708176 and MG711593 respectively, by submitting their sequences in GenBank database. This study showed that the bacterial strains B. cereus and B. aerius are valuable biological plant growth promoters that could enhance salt tolerance in Safflower plants under 100, 200, and 300mMNaCl levels resulting in an increase in plant growth and ascorbate-glutathione redox cycle, in comparison with the non-inoculated controls. Our findings reported that the co-inoculation of the two selected endophytic bacteria strains were successfully isolated from Safflower seedlings significantly alleviated the harmful effects of salt stress, promoted plant growth and biomass yield.


Sign in / Sign up

Export Citation Format

Share Document