scholarly journals Micronutrients accumulation under pearl millet-wheat cropping system in response of salinity levels amended with sewage sludge

2020 ◽  
Vol 41 (6) ◽  
pp. 1641-1647
Author(s):  
Mr. Ankush ◽  
◽  
R. Prakash ◽  
R. Singh ◽  
Sachin Kumari ◽  
...  

Aim: The present study was undertaken to evaluate the effect of sewage sludge and saline water irrigation on micronutrients concentration in pearl millet- wheat cropping system. Methodology: The trial was conducted during 2017-2019 at Soil Research Farm, CCS Haryana Agricultural University, Haryana in a factorial random block design with three replications. There were three salinity levels of irrigation water, i.e., canal water (0.35 dS m-1), 8 and 10 dS m-1 EC of saline water; and five fertilization levels, i.e., control (no fertilizer), sewage sludge(5 t ha-1), SS (5 t ha-1) + 50% RDF, SS (5 t ha-1) + 75% RDF and 100 % RDF. However, sewage sludge was applied in Rabi seasons only. Results: Based on pooled analysis of two years, micronutrients (Fe, Mn and Cu) concentration in grain and stover/straw of pearl millet and wheat crops significantly reduced on application of saline water irrigation (ECiw 8 and 10 dS m-1) whereas, Zn concentration was non significantly affected with salinity levels. However, highest concentration of Fe, Mn and Cu was recorded with canal water irrigation. There was a significant increase in micronutrients (Fe, Mn and Cu) concentration in both crops with sewage sludge application in comparison of RDF and control treatments but in case of zinc treatment SS (5 t ha-1) + 75% RDF and 100% RDF were at par with each other. Among treatments, significantly higher concentration of micronutrients was recorded with SS (5 t ha-1) + 75% RDF treatment being at par with SS (5 t ha-1) + 50% RDF. Interpretation: Salinity affects micronutrient availability adversely. However, zinc content was not affected significantly. In such case, sewage sludge application may prove a feasible option that serves as a supplement of nutrients as well as sorting out the problem of dumping waste.

2016 ◽  
Vol 29 (4) ◽  
pp. 935-944
Author(s):  
JOÃO BATISTA DOS SANTOS ◽  
DOROTEU HONÓRIO GUEDES FILHO ◽  
HANS RAJ GHEYI ◽  
GEOVANI SOARES DE LIMA ◽  
LOURIVAL FERREIRA CAVALCANTE

ABSTRACT Due to the quantitative and qualitative limitation of water resources, saline water irrigation and nitrogen (N) fertilisation can contribute positively to the expansion of sunflower cultivation in the semiarid region of Northeast Brazil. Thus, this study aimed to evaluate production components and yield of sunflower, cv. "Embrapa 122-V2000‟, irrigated with waters of different salinity levels (electrical conductivity - ECw) and fertilised with varying amounts of N in a field experiment in a eutrophic Quartzarenic Neosol from November 2012 to February 2013. The experiment was performed in a completely randomised block design in split plots, in a 5 x 4 factorial scheme, which corresponded to five ECw levels (0.15, 1.5, 2.5, 3.5 and 4.5 dS m-1) and four N levels (60, 80, 100 and 120 kg ha-1), with three replicates and 30 plants per plot. The interaction between water salinity levels and N did not have significant effects on the studied variables; irrigation water salinity had isolated negative effects on the total number of achenes, number of viable achenes, productivity and oil yield of achenes. The increase in N levels stimulated the total number and the number of viable achenes, the mass of 1,000 achenes, capitulum diameter and productivity of achenes of sunflower, cv. "Embrapa 122-V2000‟, but had no effect on the oil content of achenes. N levels of up to 100 kg ha-1 promoted adequate oil content in the achenes of sunflower, cv "Embrapa 122-V2000‟.


2020 ◽  
pp. 1-14
Author(s):  
Alaa Ibrahim ◽  
Jamal Elfaki

A greenhouse experiment was carried out to evaluate the response of tomato (Solanum lycopersicum) to saline water irrigation under soilless and traditional techniques. A special fertigation technique with two different salinity levels (1 dS m-1 and 4 dS m-1) of water was used under different soilless media, namely, perlite, gravel, and pozzolana as inert media, in addition to traditional techniques. Results showed that among the three soilless substrates, perlite medium produced the highest total yields with larger fruit sizes. Furthermore, the perlite medium enabled significant savings in water, compared to gravel (-15%) and pozzolana (-20%). Moreover, the results corroborated the existing knowledge on the tolerance of tomato to brackish water irrigation, since there was no significant difference in yield of plants grown in the soil irrigated with water with salinity levels of 1.1   dSm-1 and 4-5  dS m-1. Plant biometric data revealed a better and quicker development of plants grown in the soilless media compared to those grown in the soil, even in the case of freshwater irrigation.


Author(s):  
M. V. Dlamini ◽  
M. T. Masarirambi

Saline irrigation water is becoming an important water source as fresh water is fast becoming a scarce resource in many areas of the world, including Eswatini, especially in arid and semi-arid regions.  A study to test the response of two varieties of spinach (fordhook giant and mustard) to salinity was conducted in a field pot experiment at the Faculty of Agriculture at the Luyengo Campus of the University of Eswatini.  The treatments were laid in a randomized block design (RCBD).  The experiment consisted of four treatments, each replicated twelve times.  Treatments were salinity levels of 0.0 dS/m, 1.5 dS/m, 2.0 dS/m and 3.5 dS/m.  All the treatments were subjected to similar agronomic practices. Spinach was grown and observed for a period of five weeks.  Plant height was measured and the number of leaves counted weekly throughout the experiment. Significant differences (P < 0.05) between salinity treatments were obtained for plant height beginning in week 2 but were more pronounced in week 3, 4 and week 5.  No significant differences were obtained for the number of leaves.  There were however, clear significant differences between spinach irrigated with none saline irrigation water compared to saline irrigation water.   It was concluded that irrigating spinach with saline water of more than 2.0 dS/m drastically reduce plant growth but not the number of leaves under the conditions of the experiment.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Nuning Argo Subekti ◽  
Hasil Sembiring ◽  
Erythrina ◽  
Dedi Nugraha ◽  
Bhakti Priatmojo ◽  
...  

Abstract. Subekti NA, Sembiring H, Erythrina, Nugraha D, Priatmojo B, Nafisah. 2020. Yield of different rice cultivars at two levels of soil salinity under seawater intrusion in West Java, Indonesia. Biodiversitas 21: 14-20. A tendency to use saline water in rice production is rising in recent years, but the adaptation of variety under saline conditions is still questionable. The aim of the study was to evaluate the response of several rice cultivars on the growth and yield of rice under seawater intrusion in West Java. Two salt-tolerant cultivars (Inpari 34 and Inpari 35), two promising lines (PL-1 and PL-2) and two modern cultivars (Inpari 30 (Ciherang sub1) and Sidenuk) were evaluated in two soil salinity levels. In each farmer's field a Randomized Complete Block Design was applied with three replications per treatment. Results showed that Sidenuk and Inpari 30 produced same yield compared to tolerant varieties and promising lines during dry season under moderate soil salinity. There were not much different among the cultivars tested in terms of plant height and tiller number as well as the biomass and harvest index. However, under high soil salinity seed germination, plant height, number of tillers per plant, above-ground biomass, spikelet number, percent of sterile florets and productivity were significantly affected. Saline tolerant varieties Inpari 34 and Inpari 35 showed their superiority compared to non-tolerant varieties. Both varieties produced 40% higher yield than Inpari 30 (Ciherang sub 1) and Sidenuk.


Author(s):  
Francisco H. R. Costa ◽  
Geovana F. Goes ◽  
Murilo de S. Almeida ◽  
Clarissa L. Magalhães ◽  
José T. M. de Sousa ◽  
...  

ABSTRACT Irrigation with saline water affects the agronomic performance of the maize crop; however, the use of vegetal mulch may mitigate salt stress and promote an increase in yield. In this way, this study aimed to evaluate the grain yield of the maize plants submitted to different water salinity levels in the presence and absence of mulch. The experiment was conducted in a randomized block design arranged in a 2 × 2 factorial scheme. The first factor was the salinity of the irrigation water (1.0 and 4.0 dS m-1) and the second, with and without mulch, and five replicates. The variables analyzed were: unhusked ear mass, husked ear mass, cob mass, straw mass, husked ear diameter, husked ear length, and yield. The irrigation water with higher electrical conductivity affects negatively the ear mass with and without straw, ear diameter and ear length. The use of vegetation cover on the soil increased the unhusked ear mass with and without straw, ear diameter and length. The water with higher salinity (4.0 dS m-1) reduces the maize grain yield but with less intensity in the presence of mulch.


Author(s):  
Renu . Kumari ◽  
Alka . Singh ◽  
S K Sharma ◽  
Vibha . Bhardwaj ◽  
Narendra . Kumar

The present study was undertaken to know the effects of salinity on nodulation and leghemoglobin content in two cultivars (NDM-17 and Pusa Kasauri) of fenugreek (Trigonella foenum-greacum L.) treated with rhizobium. The pot experiments were conducted following completely randomized block design method. Two sets of pots were maintained with one set treated with rhizobium and other without. The sets were irrigated with saline water of different electrical conductivities (0.2, 3.2, 6.2, 7.2, 10.2, 12.2 and 14.2 dSm-1) created with NaCl, Na2SO4, NaHCO3 and CaCl2 salts. Observations on nodules number, weight and leghemoglobin content were recorded 30, 60, 90 and 120 days after sowing . The nodules growth decreased with increasing levels of salinity. Seeds treated with rhizobium ameliorated the deleterious effect of salinity at all levels besides improving the fertility of soil and growth of root nodules by nitrogen fixation. Present findings revealed that maximum number, weight and leghemoglobin content in cv. NDM-17 was higher as compared to cv. Pusa Kasauri in both treated and non-treated with rhizobium indicating it be the tolerant of the two cultivars.


Author(s):  
Geovani S. de Lima ◽  
Francisco W. A. Pinheiro ◽  
Hans R. Gheyi ◽  
Lauriane A. dos A. Soares ◽  
Pedro F. do N. Sousa ◽  
...  

ABSTRACT The objective of this study was to evaluate the effects of saline water irrigation management strategies and potassium doses on the concentration of photosynthetic pigments, gas exchange, and fruit production of ‘BRS GA1’ yellow passion fruit. The experiment was carried out under field conditions using a randomized block design, with treatments based on a 6 × 2 factorial scheme, related to six management strategies for irrigation with saline water (irrigation with low-salinity water throughout the crop cycle-WS; irrigation with high-salinity water in the vegetative stage-VE; flowering stage-FL; fruiting stage-FR; and successively in vegetative/flowering stages-VE/FL and vegetative/fruiting stages-VE/FR) and two doses of potassium (60 and 100% of the recommendation), with four replicates. The dose of 100% recommendation corresponded to 345 g of K2O plant-1 year-1. High electrical conductivity irrigation water (4.0 dS m-1) was used in different phenological stages according to treatment, alternating with water of low electrical conductivity (1.3 dS m-1). The synthesis of chlorophyll a and b, stomatal conductance, instantaneous carboxylation efficiency and water use efficiency of ‘BRS GA1’ yellow passion fruit were reduced under irrigation with water of 4.0 dS m-1 in all strategies adopted. Fertilization with 60% of the K recommendation promoted greater number of fruits and yellow passion fruit yield. Irrigation with 4.0 dS m-1 water in the vegetative/flowering and flowering stages reduced the yield of yellow passion fruit.


Sign in / Sign up

Export Citation Format

Share Document