Cutting edge multiple length scale sample preparation for characterization of advanced semiconductor devices

2021 ◽  
Author(s):  
Cecile Bonifacio ◽  
Author(s):  
C. S. Bonifacio ◽  
P. Nowakowski ◽  
M. L. Ray ◽  
P. E. Fischione ◽  
C. Downing

Abstract Failure analysis of advanced semiconductor devices demands fast and accurate examination from the bulk to the specific area of the defect. Consequently, nanometer resolution and below is critical for finding defects. This work presents the use of argon ion milling methods for multiple length scale sample preparation, micrometer to sub-ångström, without sample preparation- induced artifacts for correlative SEM and TEM failure analysis. The result is an accurately delayered sample from which electron-transparent TEM specimens of less than 20 nm are obtained.


Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
R. Li ◽  
M.L. Ray ◽  
P.E. Fischione ◽  
...  

Abstract Fast and accurate examination from the bulk to the specific area of the defect in advanced semiconductor devices is critical in failure analysis. This work presents the use of Ar ion milling methods in combination with Ga focused ion beam (FIB) milling as a cutting-edge sample preparation technique from the bulk to specific areas by FIB lift-out without sample-preparation-induced artifacts. The result is an accurately delayered sample from which electron-transparent TEM specimens of less than 15 nm are obtained.


2019 ◽  
Vol 16 (51) ◽  
pp. 83-93 ◽  
Author(s):  
Danijel Gostovic ◽  
Kathryn A. O'Hara ◽  
Nicholas J. Vito ◽  
E. D. Wachsman ◽  
Kevin S. Jones

Author(s):  
Terrence Reilly ◽  
Al Pelillo ◽  
Barbara Miner

The use of transmission electron microscopes (TEM) has proven to be very valuable in the observation of semiconductor devices. The need for high resolution imaging becomes more important as the devices become smaller and more complex. However, the sample preparation for TEM observation of semiconductor devices have generally proven to be complex and time consuming. The use of ion milling machines usually require a certain degree of expertise and allow a very limited viewing area. Recently, the use of an ultra high resolution "immersion lens" cold cathode field emission scanning electron microscope (CFESEM) has proven to be very useful in the observation of semiconductor devices. Particularly at low accelerating voltages where compositional contrast is increased. The Hitachi S-900 has provided comparable resolution to a 300kV TEM on semiconductor cross sections. Using the CFESEM to supplement work currently being done with high voltage TEMs provides many advantages: sample preparation time is greatly reduced and the observation area has also been increased to 7mm. The larger viewing area provides the operator a much greater area to search for a particular feature of interest. More samples can be imaged on the CFESEM, leaving the TEM for analyses requiring diffraction work and/or detecting the nature of the crystallinity.


CIRP Annals ◽  
2021 ◽  
Author(s):  
Volodymyr Bushlya ◽  
Filip Lenrick ◽  
Axel Bjerke ◽  
Hisham Aboulfadl ◽  
Mattias Thuvander ◽  
...  

2020 ◽  
Vol 24 ◽  
pp. 101002 ◽  
Author(s):  
Tássia Venga Mendes ◽  
Lidiane Silva Franqui ◽  
Mariane Gonçalves Santos ◽  
Célio Wisniewski ◽  
Eduardo Costa Figueiredo

Crystals ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 87 ◽  
Author(s):  
Cinzia Giannini ◽  
Massimo Ladisa ◽  
Davide Altamura ◽  
Dritan Siliqi ◽  
Teresa Sibillano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document