scholarly journals Caracterização da Alteração Hidrotermal Micácea do Tipo Greisen e dos Reequilíbrios de Baixa Temperatura em Áreas Graníticas: o Exemplo do Distrito Estanífero de Encruzilhada do Sul, RS

2007 ◽  
Vol 34 (2) ◽  
pp. 75
Author(s):  
ROBERTO DOS SANTOS TEIXEIRA ◽  
JOSÉ CARLOS FRANTZ ◽  
ANDRÉ SAMPAIO MEXIAS ◽  
JULIANA CHARÃO MARQUES ◽  
JORGE ALBERTO COSTA

The hydrothermal alteration associated with the tin mineralization in the Encruzilhada do Sul Tin District is characterized by zones with different compositions. The most important of these hydrothermal zones are the phyllic and the argillic. The first one is composed mainly by white mica and quartz with tourmaline. The argillic alteration is composed by kaolinite. The phyllic zones represent associations with greisens and disseminated pervasive white mica on the granitic wall rocks. The argillic zones are constrained to the top zones of some granitic intrusions associated with greisens and quartz-veins in the stockworks. The hydrothermal fluids associated with the alteration show homogenization temperatures ranging from about 450˚C to 120˚C. The first temperature is the upper limit for the hydrothermal system, related with the white mica high temperature alteration. The second temperature is the lower limit of the argillic alteration under the hydrothermal conditions. The white mica related with the phyllic alteration range from phengite to muscovite. The argillic alteration has the presence of halloysite, probably as a weathering product.

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
S. A. Murdock ◽  
V. Tunnicliffe ◽  
R. E. Boschen-Rose ◽  
S. K. Juniper

AbstractAssessment of ecosystem health entails consideration of species interactions within and between size classes to determine their contributions to ecosystem function. Elucidating microbial involvement in these interactions requires tools to distil diverse microbial information down to relevant, manageable elements. We used covariance ratios (proportionality) between pairs of species and patterns of enrichment to identify “core communities” of likely interacting microbial (<64 µm), meiofaunal (64 µm to 1 mm) and macrofaunal (>1 mm) taxa within assemblages hosted by a foundation species, the hydrothermal vent tubeworm Ridgeia piscesae. Compared with samples from co-located hydrothermal fluids, microbial communities within R. piscesae assemblages are hotspots of taxonomic richness and are high in novelty (unclassified OTUs) and in relative abundance of Bacteroidetes. We also observed a robust temperature-driven distinction in assemblage composition above and below ~25 °C that spanned micro to macro size classes. The core high-temperature community included eight macro- and meiofaunal taxa and members of the Bacteroidetes and Epsilonbacteraeota, particularly the genera Carboxylicivirga, Nitratifractor and Arcobacter. The core low-temperature community included more meiofaunal species in addition to Alpha- and Gammaproteobacteria, and Actinobacteria. Inferred associations among high-temperature core community taxa suggest increased reliance on species interactions under more severe hydrothermal conditions. We propose refinement of species diversity to “core communities” as a tool to simplify investigations of relationships between taxonomic and functional diversity across domains and scales by narrowing the taxonomic scope.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 725
Author(s):  
Ludmila B. Damdinova ◽  
Bulat B. Damdinov

This article discusses the peculiarities of mineral composition and a fluid inclusions (FIs further in the text) study of the Kholtoson W and Inkur W deposits located within the Dzhida W-Mo ore field (Southwestern Transbaikalia, Russia). The Mo mineralization spatially coincides with the apical part of the Pervomaisky stock (Pervomaisky deposit), and the W mineralization forms numerous quartz veins in the western part of the ore field (Kholtoson vein deposit) and the stockwork in the central part (Inkur stockwork deposit). The ore mineral composition is similar at both deposits. Quartz is the main gangue mineral; there are also present muscovite, K-feldspar, and carbonates. The main ore mineral of both deposits is hubnerite. In addition to hubnerite, at both deposits, more than 20 mineral species were identified; they include sulfides (pyrite, chalcopyrite, galena, sphalerite, bornite, etc.), sulfosalts (tetrahedrite, aikinite, stannite, etc.), oxides (scheelite, cassiterite), and tellurides (hessite). The results of mineralogical and fluid inclusions studies allowed us to conclude that the Inkur W and the Kholtoson W deposits were formed by the same hydrothermal fluids, related to the same ore-forming system. For both deposits, the fluid inclusion homogenization temperatures varied within the range ~195–344 °C. The presence of cogenetic liquid- and vapor-dominated inclusions in the quartz from the ores of the Kholtoson deposit allowed us to estimate the true temperature range of mineral formation as 413–350 °C. Ore deposition occurred under similar physical-chemical conditions, differing only in pressures of mineral formation. The main factors of hubnerite deposition from hydrothermal fluids were decreases in temperature.


2021 ◽  
Vol 83 (5) ◽  
Author(s):  
Tim I. Yilmaz ◽  
Fabian B. Wadsworth ◽  
H. Albert Gilg ◽  
Kai-Uwe Hess ◽  
Jackie E. Kendrick ◽  
...  

AbstractThe nature of sub-volcanic alteration is usually only observable after erosion and exhumation at old inactive volcanoes, via geochemical changes in hydrothermal fluids sampled at the surface, via relatively low-resolution geophysical methods or can be inferred from erupted products. These methods are spatially or temporally removed from the real subsurface and thus provide only indirect information. In contrast, the ICDP deep drilling of the Mt Unzen volcano subsurface affords a snapshot into the in situ interaction between the dacitic dykes that fed dome-forming eruptions and the sub-volcanic hydrothermal system, where the most recent lava dome eruption occurred between 1990 and 1995. Here, we analyse drill core samples from hole USDP-4, constraining their degree and type of alteration. We identify and characterize two clay alteration stages: (1) an unusual argillic alteration infill of fractured or partially dissolved plagioclase and hornblende phenocryst domains with kaolinite and Reichweite 1 illite (70)-smectite and (2) propylitic alteration of amphibole and biotite phenocrysts with the fracture-hosted precipitation of chlorite, sulfide and carbonate minerals. These observations imply that the early clay-forming fluid was acidic and probably had a magmatic component, which is indicated for the fluids related to the second chlorite-carbonate stage by our stable carbon and oxygen isotope data. The porosity in the dyke samples is dominantly fracture-hosted, and fracture-filling mineralization is common, suggesting that the dykes were fractured during magma transport, emplacement and cooling, and that subsequent permeable circulation of hydrothermal fluids led to pore clogging and potential partial sealing of the pore network on a timescale of ~ 9 years from cessation of the last eruption. These observations, in concert with evidence that intermediate, crystal-bearing magmas are susceptible to fracturing during ascent and emplacement, lead us to suggest that arc volcanoes enclosed in highly fractured country rock are susceptible to rapid hydrothermal circulation and alteration, with implications for the development of fluid flow, mineralization, stress regime and volcanic edifice structural stability. We explore these possibilities in the context of alteration at other similar volcanoes.


2021 ◽  
pp. 000370282199911
Author(s):  
meng ge ◽  
Lianfu Li ◽  
Xin Zhang ◽  
Zhendong Luan ◽  
Zengfeng Du ◽  
...  

The chlorinity of deep-sea hydrothermal fluids, representing one of the crucial deep-sea hydrothermal indicators, indicates the degree of deep phase separation of hydrothermal fluids and water/rock reactions. However, accurately measuring the chlorinity of high-temperature hydrothermal fluids is still a significant challenge. In this paper, a piecewise chlorinity model to measure the chlorinity of high-temperature hydrothermal fluids was developed based on the OH stretching band of water, exhibiting an accuracy of 96.20%. The peak position, peak area ratio and F value were selected to establish the chlorinity piecewise calibration model within the temperature ranges of 0-50°C, 50-200°C and 200-300°C. Compared with that of the chlorinity calibration model built based on a single parameter, the accuracy of this piecewise model increased by approximately 4.83-12.33%. This chlorinity calibration model was applied to determine the concentrations of Cl for high-temperature hydrothermal fluids in the Okinawa Trough hydrothermal field.


1997 ◽  
Vol 61 (406) ◽  
pp. 357-365 ◽  
Author(s):  
A. Murciego ◽  
A. Garcla Sanchez ◽  
Y. Dusausoy ◽  
J. M. Martin Pozas ◽  
R. Ruck

AbstractThis paper is based on microprobe analysis (Ta, Nb, Fe, Mn, Ti, W, Sn) and Fe3+EPR spectra of cassiterite samples from 14 tin deposits from the Iberian Hercynian Massif. The interpretation of microprobe data, atomic ratios (Fe+Mn)/(Nb+Ta), and Fe3+EPR spectra reveal that the coupled substitution: 3Sn4+= (Fe,Mn)2++ 2(Nb,Ta)5+is dominant in cassiterites from pegmatites, and high-temperature quartz veins and in the dark zones of cassiterites.The mechanisms:2Sn4+= Fe3++ (Nb,Ta)5+andSn4++ O2−= Fe3++ OH−are dominant in those from medium-low temperature quartz veins and in the light zones of cassiterites.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Xinglin Chen ◽  
Yongjun Shao ◽  
Chunkit Lai ◽  
Cheng Wang

The Longmendian Ag–Pb–Zn deposit is located in the southern margin of the North China Craton, and the mineralization occurs mainly in quartz veins, altered gneissic wallrocks, and minor fault breccias in the Taihua Group. Based on vein crosscutting relations, mineral assemblages, and paragenesis, the mineralization can be divided into three stages: (1) quartz–pyrite, (2) quartz–polymetallic sulfides, and (3) quartz–carbonate–polymetallic sulfides. Wallrock alteration can be divided into three zones, i.e., chlorite–sericite, quartz–carbonate–sericite, and silicate. Fluid inclusions in all Stage 1 to 3 quartz are dominated by vapor-liquid two-phase aqueous type (W-type). Petrographic and microthermometric analyses of the fluid inclusions indicate that the homogenization temperatures of Stages 1, 2, and 3 are 198–332°C, 132–260°C, and 97–166°C, with salinities of 4.0–13.3, 1.1–13.1, and 1.9–7.6 wt% NaCleqv, respectively. The vapor comprises primarily H2O, with some CO2, H2, CO, N2, and CH4. The liquid phase contains Ca2+, Na+, K+, SO42−, Cl−, and F−. The sulfides have δ34S=–1.42 to +2.35‰ and 208Pb/204Pb=37.771 to 38.795, 207Pb/204Pb=15.388 to 15.686, and 206Pb/204Pb=17.660 to 18.101. The H–C–O–S–Pb isotope compositions indicate that the ore-forming materials may have been derived from the Taihua Group and the granitic magma. The fluid boiling and cooling and mixing with meteoric water may have been critical for the Ag–Pb–Zn ore precipitation. Geological and geochemical characteristics of the Longmendian deposit indicate that the deposit is best classified as medium- to low-temperature intermediate-sulfidation (LS/IS) epithermal-type, related to Cretaceous crustal-extension-related granitic magmatism.


2002 ◽  
Vol 66 (4) ◽  
pp. 547-553 ◽  
Author(s):  
B. J. Williamson ◽  
J. J. Wilkinson ◽  
P. F. Luckham ◽  
C. J. Stanley

AbstractRecent experimental studies have suggested that colloidal silica can form in high-T (300 to >700°C) hydrothermal fluids (Wilkinson et al., 1996). Natural evidence in support of this was found by Williamson et al. (1997) who proposed a colloidal (gel) silica origin for <50 μm irregularly-shaped inclusions of quartz contained in greisen topaz from southwest England. Confocal and microprobe studies, presented here, strengthen this argument although rather than forming a gel in the hydrothermal fluid, it is suggested that the colloidal silica aggregated as a viscous coagulated colloid, with much of its volume (<10 to 30 vol.%) consisting of metal (mainly Fe) -rich particles. This is evident from the largely solid nature of metal-rich shrinkage bubbles contained at the margins of the inclusions of quartz which shows that the material forming the inclusions contained much less liquid than would be expected in a silica gel. These findings may have important implications for models of ore formation since the precipitation of a coagulated colloid could inhibit hydrothermal fluid transport and cause co-deposition of silica and entrained ore-forming elements. The mode of formation of the colloidal silica and further implications of the study are discussed.


2021 ◽  
Author(s):  
Paolo Fulignati ◽  
Martina Zucchi ◽  
Andrea Brogi ◽  
Enrico Capezzuoli ◽  
Domenico Liotta ◽  
...  

&lt;p&gt;In the Iano area (Southern Tuscany) a small tectonic window of Tuscan metamorphic units is observed. This belongs to the northernmost part of the so-called Mid-Tuscan ridge and, during Pliocene, formed a submarine high, now defining the easternmost shoulder of the Volterra Pliocene basin. The area gives the opportunity to investigate the complete cycle of negative inversion from crustal thickening to crustal thinning, which characterizes Southern Tuscany. Our new data focus on the western margin of the Iano ridge, and in particular on a system of high angle normal faults that represents the youngest structures of the investigated area. These structures, deformed low angle regional detachments locally juxtaposing the uppermost units of contractional nappe stack (the ophiolite-bearing Ligurian units), with the Tuscan metamorphic units, with an almost complete excision of at least 3.5 Km thick Mesozoic to Tertiary Tuscan nappe succession. The high angle normal faults show variable Plio-Quaternary vertical displacements from few meters to about 500 meters, and acted as pathways for the upwelling of hydrothermal fluids, as revealed by Pleistocene travertine deposits, hydrothermal alteration and occurrence of different generations of fluid inclusions in hydrothermal veins associated with these fault systems. Fluid inclusions were studied in quartz veins hosted in the Verrucano metasediments forming the top of the Tuscan metamorphic unit, as well as in some carbonate lithotypes (Cretaceous to Tertiary in age) of the overlying Tuscan Nappe. Two different kinds of fluid inclusions were documented. The Type 1 are multiphase (liquid + vapor + 1 daughter mineral) liquid-rich fluid inclusions whereas the Type 2 are two-phase (liquid + vapor) liquid-rich fluid inclusions. Type 1 fluid inclusions are primary in origin and were found only in quartz veins present in Verrucano metarudites, whereas Type 2 fluid inclusions occur in quartz veins present in both Verrucano phyllites and quartzites and in the carbonate units of the Tuscan Nappe. These are secondary and can be furthermore distinguished in two sub-populations (Type 2a and Type 2b) on the basis of petrographic observation and microthermometric data. Fluid inclusion investigation evidenced an evolution of the hydrothermal fluids from relatively high-T (~265&amp;#176;C) and hypersaline (35 wt.% NaCl&lt;sub&gt;equiv.&lt;/sub&gt;) fluids trapped at about 100 MPa, to lower temperature (~195&amp;#176;C) and salinity (~9.5 wt.% NaCl&lt;sub&gt;equiv.&lt;/sub&gt;) fluids, having circulated in the high-angle fault system. Based on the new data and a revision of the local tectonic setting a fluid-rock interaction history has been reconstructed with new hints and constraints for the Plio-Quaternary extensional history of the Volterra basin.&lt;/p&gt;


2020 ◽  
Author(s):  
Sean Hillacre ◽  
Kevin Ansdell ◽  
Brian McEwan

Abstract Recent significant discoveries of uranium mineralization in the southwestern Athabasca basin, northern Saskatchewan, Canada, have been associated with a series of geophysical conductors along a NE- to SW-trending structural zone, termed the Patterson Lake corridor. The Arrow deposit (indicated mineral resource: 256.6 Mlb U3O8; grade 4.03% U3O8) is along this trend, hosted exclusively in basement orthogneisses of the Taltson domain, and is the largest undeveloped uranium deposit in the basin. This study is the first detailed analysis of a deposit along this corridor and examines the relationships between the ductile framework and brittle reactivation of structures, mineral paragenesis, and uranium mineralization. Paragenetic information from hundreds of drill core samples and thin sections was integrated with structural analysis utilizing over 18,000 measurements of various structural features. The structural system at Arrow is interpreted as a partitioned, strike-slip–dominated, brittle-ductile fault system of complex Riedel-style geometry. The system developed along subvertical, NE- to SW-trending dextral high-strain zones formed syn- to post-D3 deformation, which were the focus of extensive premineralization metasomatism (quartz flooding, sericitization, chloritization), within the limb domain of a regional-scale fold structure. These zones evolved through post-Athabasca dextral and sinistral reactivation events, creating brittle fault linkages and dilation zones, allowing for hydrothermal fluid migration and resulting uraninite precipitation and associated alteration (white mica, chlorite, kaolinite, hematite, quartz veins). This study of the structural context of Arrow is important as it emphasizes that protracted reactivation of deep-seated structures and their subsidiaries was a fundamental control on uranium mineralization in the southwestern Athabasca basin.


Sign in / Sign up

Export Citation Format

Share Document