Eff ects of hyperbaric oxygen on NLRP3 infl ammasome activation in the brain aft er carbon monoxide poisoning

2020 ◽  
pp. 607-619
Author(s):  
Ya’nan Qi ◽  
◽  
Zhibao Guo ◽  
Huijun Hu ◽  
Xiang’en Meng ◽  
...  

Neuroinflammation plays an important role in brain damage after acute carbon monoxide poisoning (ACOP). The nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing (NLRP) 3 inflammasome triggers the activation of inflammatory caspases and maturation of interleukin (IL)-1β and -18, and has been linked to various human autoinflammatory and autoimmune diseases. In this study we investigated the effects of hyperbaric oxygen (HBO2) on NLRP3 inflammasome activation after ACOP. Mice were randomly divided into four groups: sham group (exposure to normobaric air – i.e., 21% O2 at 1 atmosphere absolute); HBO2-only group; CO + normobaric air group; and CO + HBO2 group. Cognitive function was evaluated with the Morris water maze; myelin injury was assessed by Fluoro-Myelin GreenTM fluorescent myelin staining and myelin basic protein (MBP) immunostaining; and mRNA and protein levels of NLRP3 inflammasome complex proteins were measured by quantitative real-time PCR and Western blot, respectively. Additionally, serum and brain levels of IL-1β and -18 and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were determined by enzyme-linked immunosorbent assay. It was found that HBO2 improved learning and memory, and alleviated myelin injury in mice subjected to acute CO exposure. Furthermore, HBO2 decreased NLRP3, absent in melanoma 2 (AIM2), caspase-1, and apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain mRNA and protein levels, and reduced brain and serum concentrations of IL-1β and -18 and NADPH oxidase. These results indicate that HBO2 suppresses the inflammatory response after ACOP by blocking NLRP3 inflammasome activation, thereby alleviating cognitive deficits.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qi Wang ◽  
Bingfeng Lin ◽  
Zhifeng Li ◽  
Jie Su ◽  
Yulin Feng

Gouty arthritis is characterized by the deposition of monosodium urate (MSU) within synovial joints and tissues due to increased urate concentrations. Here, we elucidated the role of the natural compound cichoric acid (CA) on the MSU crystal-stimulated inflammatory response. The THP-1-derived macrophages (THP-Ms) were pretreated with CA and then stimulated with MSU suspensions. The protein levels of p65 and IκBα, the activation of the NF-κB signaling pathway by measuring the expression of its downstream inflammatory cytokines, and the activity of NLRP3 inflammasome were measured by western blotting and ELISA. CA treatment markedly inhibited the degradation of IκBα and the activation of NF-κB signaling pathway and reduced the levels of its downstream inflammatory genes such as IL-1β, TNF-α, COX-2, and PGE2 in the MSU-stimulated THP-M cells. Therefore, we infer that CA effectively alleviated MSU-induced inflammation by suppressing the degradation of IκBα, thereby reducing the activation of the NF-κB signaling pathway and the NLRP3 inflammasome. These results suggest that CA could be a novel therapeutic strategy in averting acute episodes of gout.


Pharmacology ◽  
2018 ◽  
Vol 101 (5-6) ◽  
pp. 236-245 ◽  
Author(s):  
Shiro Nakamura ◽  
Toshio Watanabe ◽  
Tetsuya Tanigawa ◽  
Sunao Shimada ◽  
Yuji Nadatani ◽  
...  

Activation of the NOD-Like Receptor Family, Pyrin Domain-Containing 3 (NLRP3) inflammasome, which consists of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1, triggers pro-caspase-1 cleavage promoting the processing of pro-interleukin (IL)-1β into mature IL-1β, which is critical for the development of non-steroidal anti-inflammatory drug (NSAID)-induced enteropathy. We investigated the effects of isoliquiritigenin, a flavonoid derived from the roots of Glycyrrhiza species, on NSAID-induced small intestinal damage and the inflammasome activation. To induce enteropathy, mice were administered indomethacin by gavage with or without isoliquiritigenin pretreatment. Some mice received an intraperitoneal injection of recombinant murine IL-1β in addition to isoliquiritigenin and indomethacin. Indomethacin induced small intestinal damage and increased protein levels of cleaved caspase-1 and mature IL-1β in the small intestine. Treatment with 7.5 and 75 mg/kg isoliquiritigenin inhibited indomethacin-induced small intestinal damage by 40 and 56%, respectively. Isoliquiritigenin also inhibited the indomethacin-induced increase in cleaved caspase-1 and mature IL-1β protein levels, whereas it did not affect the mRNA expression of NLRP3, ASC, caspase-1, and IL-1β. Protection against intestinal damage in isoliquiritigenin-treated mice was completely abolished with exogenous IL-1β. NLRP3–/– and caspase-1–/– mice exhibited resistance to intestinal damage, and isoliquiritigenin treatment failed to inhibit the damage in NLRP3–/– and caspase-1–/– mice. Isoliquiritigenin prevents NSAID-induced small intestinal damage by inhibiting NLRP3 inflammasome activation.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Merry W. Ma ◽  
Jing Wang ◽  
Krishnan M. Dhandapani ◽  
Darrell W. Brann

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. After the initial primary mechanical injury, a complex secondary injury cascade involving oxidative stress and neuroinflammation follows, which may exacerbate the injury and complicate the healing process. NADPH oxidase 2 (NOX2) is a major contributor to oxidative stress in TBI pathology, and inhibition of NOX2 is neuroprotective. The NLRP3 inflammasome can become activated in response to oxidative stress, but little is known about the role of NOX2 in regulating NLRP3 inflammasome activation following TBI. In this study, we utilized NOX2 knockout mice to study the role of NOX2 in mediating NLRP3 inflammasome expression and activation following a controlled cortical impact. Expression of NLRP3 inflammasome components NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC), as well as its downstream products cleaved caspase-1 and interleukin-1β (IL-1β), was robustly increased in the injured cerebral cortex following TBI. Deletion of NOX2 attenuated the expression, assembly, and activity of the NLRP3 inflammasome via a mechanism that was associated with TXNIP, a sensor of oxidative stress. The results support the notion that NOX2-dependent inflammasome activation contributes to TBI pathology.


2017 ◽  
Vol 493 (2) ◽  
pp. 957-963 ◽  
Author(s):  
Do won Lee ◽  
Ha young Shin ◽  
Ji Hun Jeong ◽  
Jaeseok Han ◽  
Seongho Ryu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Li Zhang ◽  
Xiaochen Li ◽  
Haosheng Zhang ◽  
Zhengquan Huang ◽  
Nongshan Zhang ◽  
...  

Increasing evidence has shown that NLRP3 inflammasome activation participates in chronic aseptic inflammation and is related to tissue fibrosis. Our last study also revealed the vital role of NLRP3 inflammasome, highly associated with tissue hypoxia, in the onset and development of knee osteoarthritis (KOA). In this study, we tried to find a possible benign intervention for that pathological process. Agnuside (AGN), a nontoxic, natural small molecule isolated from the extract of Vitex negundo L. (Verbenaceae), has been demonstrated to have antioxidation, anti-inflammatory, analgesia, and many other properties as an iridoid glycoside, although its specific target is still unclear. Therefore, we established MIA-induced KOA model rats and investigated the effects of AGN oral gavage on oxygen-containing state, NLRP3 inflammasome, synovitis, and fibrosis in KOA. Pimonidazole staining and HIF-1α immunohistochemical assay both showed that AGN at the oral dose of 6.25 mg/kg can effectively relieve local hypoxia in synovial tissue. Besides, we observed a decrease of HIF-1α, caspase-1, ASC, and NLRP3 after AGN intervention, both in the mRNA and protein levels. In addition, rats treated with the AGN showed less inflammatory reaction and fibrosis, not only in the expression of NLRP3, inflammasome downstream factors IL-1β and IL-18, and fibrosis markers TGF-β, TIMP1, and VEGF but also in the observation of HE staining, anatomical characteristics, Sirius Red staining, and type I collagen immunohistochemistry. Subsequently, we established LPS-induced models of fibroblast-like synoviocytes (FLSs) mimicking the inflammatory environment of KOA and activating NLRP3 inflammasome. FLSs treated with AGN (3 μM) resulted in a downregulation of HIF-1α and the components required for NLRP3 inflammasome activation. Meanwhile, the content of proinflammatory factors IL-1β and IL-18 in FLS supernatant was also reduced by AGN. In addition, both mRNA and protein levels of the fibrotic markers were significantly decreased after AGN management. To conclude, this study demonstrates that AGN alleviates synovitis and fibrosis in experimental KOA through the inhibition of HIF-1α accumulation and NLRP3 inflammasome activation. Additionally, not only does it reveal some novel targets for anti-inflammatory and antioxidant effects of AGN but also announces its potential value in treating KOA in humans.


2020 ◽  
Author(s):  
Francesca La Rosa ◽  
Chiara Paola Zoia ◽  
Chiara Bazzini ◽  
Alessandra Bolognini ◽  
Saresella Marina ◽  
...  

Abstract Background Aβ42-deposition plays a pivotal role in AD-pathogenesis by inducing the activation of microglial cells and neuroinflammation. This process is antagonized by microglia-mediated clearance of Aβ plaques. Activation of the NLRP3 inflammasome is involved in neuroinflammation and in the impairments of Aβ-plaques clearance. Stavudine (d4T) on the other hand down-regulates the NLRP3 inflammasome and stimulates autophagy-mediated Aβ-clearing in a TPH-1 cell line model. Methods We explored the effect of d4T on Aβ- autophagy using PBMC of AD patients that were primed with LPS and stimulated with Aβ in the absence/presence of d4T. We analyzed the NLRP3 inflammasome activity by measuring NLRP3-ASC complexes formation by AMNIS Flow-sight and pro-inflammatory cytokines (IL-1β, IL-18 and Caspase-1) production by enzyme-linked immunosorbent assay (ELISA). Western blot analyses were used to measure phosphorylation and protein expression of p38, CREB, ERK and AKT, p70, LAMP 2A, beclin-1 and Bax. Results data showed that d4T: 1) down regulates NLRP3 inflammasome activation and the production of down-stream proinflammatory cytokines even in PBMC; 2) stimulates the phosphorylation of AKT, ERK, p70 as well as LAMP2A production, but does modulate beclin-1, suggesting a selective effect of this compound on chaperone-mediated autophagy (CMA); 3) up regulates p-CREB and BAX, possibly diminishing Aβ–mediated cytotoxicity; and 4) reduces the phosphorylation of p-38, a protein involved in the production of proinflammatory cytokines. Conclusions d4T reduces the activation of the NLRP3 inflammasome and stimulates CMA autophagy as well as molecular mechanisms that modulate cytotoxicity and reduce inflammation in cells of AD patients. It might be interesting to verify the possibly beneficial effects of d4T in the clinical scenario.


Sign in / Sign up

Export Citation Format

Share Document