scholarly journals Cichoric Acid Ameliorates Monosodium Urate-Induced Inflammatory Response by Reducing NLRP3 Inflammasome Activation via Inhibition of NF-kB Signaling Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qi Wang ◽  
Bingfeng Lin ◽  
Zhifeng Li ◽  
Jie Su ◽  
Yulin Feng

Gouty arthritis is characterized by the deposition of monosodium urate (MSU) within synovial joints and tissues due to increased urate concentrations. Here, we elucidated the role of the natural compound cichoric acid (CA) on the MSU crystal-stimulated inflammatory response. The THP-1-derived macrophages (THP-Ms) were pretreated with CA and then stimulated with MSU suspensions. The protein levels of p65 and IκBα, the activation of the NF-κB signaling pathway by measuring the expression of its downstream inflammatory cytokines, and the activity of NLRP3 inflammasome were measured by western blotting and ELISA. CA treatment markedly inhibited the degradation of IκBα and the activation of NF-κB signaling pathway and reduced the levels of its downstream inflammatory genes such as IL-1β, TNF-α, COX-2, and PGE2 in the MSU-stimulated THP-M cells. Therefore, we infer that CA effectively alleviated MSU-induced inflammation by suppressing the degradation of IκBα, thereby reducing the activation of the NF-κB signaling pathway and the NLRP3 inflammasome. These results suggest that CA could be a novel therapeutic strategy in averting acute episodes of gout.

2021 ◽  
Vol 11 (7) ◽  
pp. 896
Author(s):  
Yuan Li ◽  
Weihong Long ◽  
Menghan Gao ◽  
Fangtai Jiao ◽  
Zecai Chen ◽  
...  

Background: TREM2 expressed on microglia plays an important role in modulating inflammation in neurodegenerative diseases. It remains unknown whether TREM2 modulates hyperglycemia-induced microglial inflammation. Methods: We investigated the molecular function of TREM2 in high glucose-induced microglial inflammation using western blotting, qPCR, ELISA, pulldown, and co-IP methods. Results: Our data showed that in high glucose-induced BV2 cells, TREM2 was increased, and the proinflammatory cytokine IL-1β was increased. TREM2 knockout (KO) attenuated the proinflammatory cytokine IL-1β; conversely, TREM2 overexpression (OE) exacerbated IL-1β expression. Furthermore, we found that high glucose promoted the interaction of TREM2 with NLRP3. TREM2 KO abolished the interaction of TREM2 with NLRP3, while TREM2 OE enhanced the interaction. Moreover, TREM2 KO reduced high glucose-induced NLRP3 inflammasome activation, and TREM2 OE augmented high glucose-induced NLRP3 inflammasome activation, indicating that high glucose enhances the expression of TREM2, which activates the NLRP3 inflammasome. To further clarify whether the NLRP3 signaling pathway mediates the TREM2-regulated inflammatory response, we blocked the NLRP3 inflammasome by knocking out NLRP3 and treating cells with a caspase1 inhibitor, which decreased the levels of the IL-1β proinflammatory cytokine but did not affect the high glucose-induced expression of TREM2. Conclusions: TREM2 modulates high glucose-induced microglial inflammation via the NLRP3 signaling pathway.


2020 ◽  
pp. 607-619
Author(s):  
Ya’nan Qi ◽  
◽  
Zhibao Guo ◽  
Huijun Hu ◽  
Xiang’en Meng ◽  
...  

Neuroinflammation plays an important role in brain damage after acute carbon monoxide poisoning (ACOP). The nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing (NLRP) 3 inflammasome triggers the activation of inflammatory caspases and maturation of interleukin (IL)-1β and -18, and has been linked to various human autoinflammatory and autoimmune diseases. In this study we investigated the effects of hyperbaric oxygen (HBO2) on NLRP3 inflammasome activation after ACOP. Mice were randomly divided into four groups: sham group (exposure to normobaric air – i.e., 21% O2 at 1 atmosphere absolute); HBO2-only group; CO + normobaric air group; and CO + HBO2 group. Cognitive function was evaluated with the Morris water maze; myelin injury was assessed by Fluoro-Myelin GreenTM fluorescent myelin staining and myelin basic protein (MBP) immunostaining; and mRNA and protein levels of NLRP3 inflammasome complex proteins were measured by quantitative real-time PCR and Western blot, respectively. Additionally, serum and brain levels of IL-1β and -18 and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were determined by enzyme-linked immunosorbent assay. It was found that HBO2 improved learning and memory, and alleviated myelin injury in mice subjected to acute CO exposure. Furthermore, HBO2 decreased NLRP3, absent in melanoma 2 (AIM2), caspase-1, and apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain mRNA and protein levels, and reduced brain and serum concentrations of IL-1β and -18 and NADPH oxidase. These results indicate that HBO2 suppresses the inflammatory response after ACOP by blocking NLRP3 inflammasome activation, thereby alleviating cognitive deficits.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1919
Author(s):  
Huijeong Ahn ◽  
Gilyoung Lee ◽  
Geun-Shik Lee

Gout is a recurrent and chronic form of arthritis caused by the deposition of monosodium urate (MSU) crystals in the joints. Macrophages intake MSU crystals, the trigger for NLRP3 inflammasome activation, which leads to the release of interleukin (IL)-1β and results in the flaring of gout. The effects of temperature, an environmental factor for MSU crystallization, on IL-1β secretion have not been well studied. This study examined the effects of temperature on inflammasome activation. Specific triggers activated canonical inflammasomes (NLRP3, NLRC4, and AIM2) in murine macrophages at various temperatures (25, 33, 37, 39, and 42 °C). The maturation of IL-1β and caspase-1 was measured as an indicator for inflammasome activation. As expected, the optimal temperature of inflammasome activation was 37 °C. The MSU crystal-mediated activation of inflammasome increased at temperatures lower than 37 °C and decreased at higher temperatures. MSU crystals at lower temperatures enhanced IL-1β secretion via the NLRP3 inflammasome pathway. A lower temperature promoted the formation of MSU crystals without changing phagocytosis. Overall, lower temperatures form more MSU crystals and enhance NLRP3 inflammasome activation. In light of these findings, it is possible that hyperthermia therapy may reduce gout flaring.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jianjun Jiang ◽  
Yining Shi ◽  
Jiyu Cao ◽  
Youjin Lu ◽  
Gengyun Sun ◽  
...  

Abstract Background This study aimed to explore the effects of ceramide (Cer) on NLRP3 inflammasome activation and their underlying mechanisms. Methods Lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced NLRP3 inflammasome activation in J774A.1 cells and THP-1 macrophages was used as an in vitro model of inflammation. Western blotting and real-time PCR (RT-PCR) were used to detect the protein and mRNA levels, respectively. IL-1β and IL-18 levels were measured by ELISA. ASM assay kit and immunofluorescence were used to detect ASM activity and Cer content. Results Imipramine, a well-known inhibitor of ASM, significantly inhibited LPS/ATP-induced activity of ASM and the consequent accumulation of Cer. Additionally, imipramine suppressed the LPS/ATP-induced expression of thioredoxin interacting protein (TXNIP), NLRP3, caspase-1, IL-1β, and IL-18 at the protein and mRNA level. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced activation of TXNIP/NLRP3 inflammasome but did not affect LPS/ATP-induced ASM activation and Cer formation. TXNIP siRNA and verapamil inhibited C2-Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome. In addition, the pretreatment of cells with sulfo-N-succinimidyl oleate (SSO), an irreversible inhibitor of the scavenger receptor CD36, blocked Cer-induced upregulation of nuclear factor-κB (NF-κB) activity, TXNIP expression, and NLRP3 inflammasome activation. Inhibition of NF-κB activation by SN50 prevented Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome but did not affect CD36 expression. Conclusion This study demonstrated that the ASM/Cer/TXNIP signaling pathway is involved in NLRP3 inflammasome activation. The results documented that the CD36-dependent NF-κB-TXNIP signaling pathway plays an essential role in the Cer-induced activation of NLRP3 inflammasomes in macrophages.


2021 ◽  
Vol 49 (08) ◽  
pp. 2001-2015
Author(s):  
Guixian Zhang ◽  
Liming Tang ◽  
Hongbin Liu ◽  
Dawei Liu ◽  
Manxue Wang ◽  
...  

Chronic pancreatitis (CP) is a multifactorial, inflammatory syndrome characterized by acinar atrophy and fibrosis. Activation of NOD-like receptors family pyrin domain-containing 3 (NLRP3) inflammasome is a central mediator of multiple chronic inflammatory responses and chronic fibrosis including pancreatic fibrosis in CP. The Psidium guajavaleaf is widely used in traditional medicine for the treatment of chronic inflammation, but the anti-inflammatory effect of Psidium guajavaleaf on CP has not yet been revealed. In this study, we investigated whether the extract of total flavonoids from Psidium guajava leaves (TFPGL) plays a therapeutic mechanism on CP through NLRP3 inflammasome signaling pathway in a mouse CP model. The H&E and acid-Sirius red staining indicted that TFPGL attenuated the inflammatory cell infiltration and fibrosis significantly. The results of immunohistological staining, western blot and RT-qPCR showed that the expressions of NLRP3 and caspase-1 were significantly increased in the CP model group, while TFPGL significantly decreased the NLRP3 and caspase-1 expression at both the gene and protein levels. Moreover, ELISA assay was used to examine the levels of NLRP3 inflammasome target genes, such as caspase-1, IL-1[Formula: see text] and IL-18. We found that TFPGL treatment decreased the expression of caspase-1, IL-1[Formula: see text] and IL-18, which is critical for the NLRP3 inflammasome signaling pathway and inflammation response significantly. These results demonstrated that TFPGL attenuated pancreatic inflammation and fibrosis via preventing NLRP3 inflammasome activation and TFPGL can be used as a potential therapeutic agent for CP.


Pharmacology ◽  
2018 ◽  
Vol 101 (5-6) ◽  
pp. 236-245 ◽  
Author(s):  
Shiro Nakamura ◽  
Toshio Watanabe ◽  
Tetsuya Tanigawa ◽  
Sunao Shimada ◽  
Yuji Nadatani ◽  
...  

Activation of the NOD-Like Receptor Family, Pyrin Domain-Containing 3 (NLRP3) inflammasome, which consists of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1, triggers pro-caspase-1 cleavage promoting the processing of pro-interleukin (IL)-1β into mature IL-1β, which is critical for the development of non-steroidal anti-inflammatory drug (NSAID)-induced enteropathy. We investigated the effects of isoliquiritigenin, a flavonoid derived from the roots of Glycyrrhiza species, on NSAID-induced small intestinal damage and the inflammasome activation. To induce enteropathy, mice were administered indomethacin by gavage with or without isoliquiritigenin pretreatment. Some mice received an intraperitoneal injection of recombinant murine IL-1β in addition to isoliquiritigenin and indomethacin. Indomethacin induced small intestinal damage and increased protein levels of cleaved caspase-1 and mature IL-1β in the small intestine. Treatment with 7.5 and 75 mg/kg isoliquiritigenin inhibited indomethacin-induced small intestinal damage by 40 and 56%, respectively. Isoliquiritigenin also inhibited the indomethacin-induced increase in cleaved caspase-1 and mature IL-1β protein levels, whereas it did not affect the mRNA expression of NLRP3, ASC, caspase-1, and IL-1β. Protection against intestinal damage in isoliquiritigenin-treated mice was completely abolished with exogenous IL-1β. NLRP3–/– and caspase-1–/– mice exhibited resistance to intestinal damage, and isoliquiritigenin treatment failed to inhibit the damage in NLRP3–/– and caspase-1–/– mice. Isoliquiritigenin prevents NSAID-induced small intestinal damage by inhibiting NLRP3 inflammasome activation.


Sign in / Sign up

Export Citation Format

Share Document