scholarly journals Pengaruh Kaolin Terhadap Membran Blend Kitosan Poli Vinil Alkohol-Litium Sebagai Membran Elektrolit Untuk Aplikasi Baterai Ion Litium

2017 ◽  
Vol 6 (1) ◽  
pp. 55
Author(s):  
Siang Tandi Gonggo ◽  
Anang Wahid M. Diah ◽  
Reki Lanteene

Today, the battery is the most practical and in expensive energy storage device in a modern community. A variety of new materials technologies has been developed in the manufacture of the battery, especially the development of the solid electrolyte (solid). Polymer Electrolytes can be found in the polymer batteries form such as lithium ion polymer battery. A natural polymer such as chitosan is potential as polymer electrolyte membrane for battery applications. The chitosan has amino and hydroxyl groups that allow for modification. The modification of chitosan membrane is expected to produce the better membranes characters. The aim of this research is to study the effect of the addition of inorganic filler kaolin on the conductivity of the polymer electrolyte that made of chitosan-polyvinyl alcohol than was added to the lithium salt. The ionic conductivity of the polymer electrolyte chitosan-polyvinyl alcohol-lithium-kaolin was measured by using an impedance spectroscopy. The measurement results showed that the polymer electrolyte chitosan-polyvinyl alcohol-lithium with the addition of 4% kaolin provide the highest ionic conductivity is large 6.551x10-5 S/cm. In comparison, characteristics of batteries that made from polymer electrolyte chitosan-polyvinyl alcohol-lithium with the addition of kaolin have a voltage of 2.4 volts which have similarities to the commercial batteries. This result indicates that the kaolin can be used as a filler to increase the ionic conductivity of the polymer electrolyte chitosan-polyvinyl alcohol-lithium, and then it can be developed as a battery.

Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 595 ◽  
Author(s):  
Preston Sutton ◽  
Martino Airoldi ◽  
Luca Porcarelli ◽  
Jorge L. Olmedo-Martínez ◽  
Clément Mugemana ◽  
...  

Lithium metal anodes have been pursued for decades as a way to significantly increase the energy density of lithium-ion batteries. However, safety risks caused by flammable liquid electrolytes and short circuits due to lithium dendrite formation during cell cycling have so far prevented the use of lithium metal in commercial batteries. Solid polymer electrolytes (SPEs) offer a potential solution if their mechanical properties and ionic conductivity can be simultaneously engineered. Here, we introduce a family of SPEs that are scalable and easy to prepare with a photopolymerization process, synthesized from amphiphilic acrylic polymer conetworks based on poly(ethylene glycol), 2-hydroxy-ethylacrylate, norbornyl acrylate, and either lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) or a single-ion polymethacrylate as lithium-ion source. Several conetworks were synthesized and cycled, and their ionic conductivity, mechanical properties, and lithium transference number were characterized. A single-ion-conducting polymer electrolyte shows the best compromise between the different properties and extends the calendar life of the cell.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 163 ◽  
Author(s):  
Omed Gh. Abdullah ◽  
Yahya A. K. Salman ◽  
Dana A. Tahir ◽  
Gelas M. Jamal ◽  
Hawzhin T. Ahmed ◽  
...  

Proton conducting nanocomposite solid polymer electrolytes (NSPEs) based on polyvinyl alcohol/ammonium nitrate (PVA/NH4NO3) and different contents of zinc oxide nanoparticles (ZnO-NPs) have been prepared using the casting solution method. The XRD analysis revealed that the sample with 2 wt.% ZnO-NPs has a high amorphous content. The ionic conductivity analysis for the prepared membranes has been carried out over a wide range of frequencies at varying temperatures. Impedance analysis shows that sample with 2 wt.% ZnO-NPs has a smaller bulk resistance compared to that of undoped polymer electrolyte. A small amount of ZnO-NPs was found to enhance the proton-conduction significantly; the highest obtainable room-temperature ionic conductivity was 4.71 × 10−4 S/cm. The effect of ZnO-NP content on the transport parameters of the prepared proton-conducting NSPEs was investigated using the Rice–Roth model; the results reveal that the increase in ionic conductivity is due to an increment in the number of proton ions and their mobility.


2016 ◽  
Vol 864 ◽  
pp. 159-162 ◽  
Author(s):  
Christin Rina Ratri ◽  
Qolby Sabrina

Solid polymer electrolyte with PVdF polymer and LiBOB salt has been prepared with doctor blade method. To improve the membrane ionic conductivity, TiO2 has been added. Surface morphology analysis was performed using SEM and EDX spectroscopy. Conductivity behaviour was studied with AC impedance spectroscopy (EIS). SEM and EDX analysis results have shown that TiO2 addition played a role in pore formation on solid polymer electrolyte membrane. The highest value of ionic conductivity in PVdF-LiBOB solid polymer electrolyte system in this research was found to be 5.79% x 10-6 Scm-1 in room temperature, i.e sample with 30% TiO2 addition. It was also studied that agglomeration of TiO2 particle occurred on the surface of the membrane resulted in decreasing of ionic conductivity.


2015 ◽  
Vol 6 (7) ◽  
pp. 1052-1055 ◽  
Author(s):  
Suting Yan ◽  
Jianda Xie ◽  
Qingshi Wu ◽  
Shiming Zhou ◽  
Anqi Qu ◽  
...  

A solid polymer electrolyte fabricated using ion containing microgels manifests high ionic conductivity for potential use in lithium batteries.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Qolby Sabrina ◽  
Titik Lestariningsih ◽  
Christin Rina Ratri ◽  
Achmad Subhan

Solid polymer electrolyte (SPE) appropriate to solve packaging leakage and expansion volume in lithium-ion battery systems. Evaluation of electrochemical performance of SPE consisted of mixture lithium salt, solid plasticizer, and polymer precursor with different ratio. Impedance spectroscopy was used to investigate ionic conduction and dielectric response lithium bis(trifluoromethane)sulfony imide (LiTFSI) salt, and additive succinonitrile (SCN) plasticizer. The result showing enhanced high ionic conductivity. In half-cell configurations, wide electrochemical stability window of the SPE has been tested. Have stability window at room temperature, indicating great potential of SPE for application in lithium ion batteries. Additive SCN contribute to forming pores that make it easier for the li ion to move from the anode to the cathode and vice versa for better perform SPE. Pore of SPE has been charaterization with FE-SEM. Additive 5% w.t SCN shows the best ionic conductivity with 4.2 volt wide stability window and pretty much invisible pores.


2021 ◽  
Vol 12 (5) ◽  
pp. 6114-6123

Solid polymer electrolytes (SPEs) based carboxymethyl cellulose (CMC) with lithium perchlorate (LiClO4) were prepared via solution drop-cast technique. The CMC host is complexed by different concentrations of LiClO4 salt. SPEs were characterized by Electrochemical Impedance Spectroscopy (EIS) and Linear Sweep Voltammetry (LSV) in coin cells with lithium metal electrodes. EIS performed unique results based on various ionic conductivity values and dielectric properties. The higher ionic conductivity (1.32 × 10-5 S/cm) was obtained by SPEs 2 following by short-range ionic transport results based on dielectric properties depending on frequency. SPEs with LiClO4 addition are electrochemically stable over 2 V in lithium battery coin cells from LSV results.


2019 ◽  
Vol 12 (06) ◽  
pp. 1930006 ◽  
Author(s):  
Chengjun Yi ◽  
Wenyi Liu ◽  
Linpo Li ◽  
Haoyang Dong ◽  
Jinping Liu

Solid-state polymer lithium-ion batteries with better safety and higher energy density are one of the most promising batteries, which are expected to power future electric vehicles and smart grids. However, the low ionic conductivity at room temperature of solid polymer electrolytes (SPEs) decelerates the entry of such batteries into the market. Creating polymer-in-salt solid electrolytes (PISSEs) where the lithium salt contents exceed 50[Formula: see text]wt.% is a viable technology to enhance ionic conductivity at room temperature of SPEs, which is also suitable for scalable production. In this review, we first clarify the structure and ionic conductivity mechanism of PISSEs by analyzing the interactions between lithium salt and polymer matrix. Then, the recent advances on polyacrylonitrile (PAN)-based PISSEs and polycarbonate derivative-based PISSEs will be reviewed. Finally, we propose possible directions and opportunities to accelerate the commercializing of PISSEs for solid polymer Li-ion batteries.


e-Polymers ◽  
2014 ◽  
Vol 14 (2) ◽  
pp. 115-120 ◽  
Author(s):  
N. Ataollahi ◽  
A. Ahmad ◽  
T.K. Lee ◽  
A.R. Abdullah ◽  
M.Y.A. Rahman

AbstractThe ionic conductivity of ammonium-based solid polymer films of poly(vinylidene fluoride) (PVDF) blended with MG49, a graft of natural rubber and poly(methyl methacrylate), with various compositions of ammonium triflate NH4CF3SO3, was investigated. As a result, 30 wt.% of NH4CF3SO3-doped polymer electrolyte exhibits the highest ionic conductivity at 6.32×10-4 S/cm at room temperature. The conductivity enhancement can be attributed to the increase in the number of NH4+ as charge carriers. The significance of the blend is the increase of one order in ionic conductivity as compared with pure PVDF electrolyte. The temperature dependence of conductivity of the electrolyte does not obey the Arrhenius law. However, the conductivity increases with temperature and it reached 1.56×10-3 S/cm at 363 K. X-ray diffraction reveals a decrease in crystallinity of the electrolyte upon the addition of NH4CF3SO3 salt. This result is supported by scanning electron microscopy. Linear sweep voltammetry demonstrates that the anodic stability of the electrolyte is up to 4 V. Therefore, the electrolyte shows good compatibility with high-voltage electrode. Hence, this electrolyte system can be a prospective candidate as lithium-ion conducting electrolyte for lithium batteries.


2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Mohd Noor Zairi Mohd Sapri ◽  
Azizah Hanom Ahmad

The solid polymer electrolytes (SPEs) composed of Poly (ethylene oxide) (PEO) with sodium trifluoromethanesulfonate (NaCF3SO3) salt has been prepared by solution casting technique. The conductivity and dielectric of the solid polymer electrolyte systems were studied within the broad frequency range of 50 Hz–1 MHz and within a temperature range of 30 ˚C to 100 ˚C. The samples were prepared by various salt concentrations ranging from 2 wt% to 22 wt%. The sample containing 18 wt% of NaCF3SO3 salt exhibit the highest ionic conductivity of 1.091 x 10-5 Scm-1 at 30 ˚C. The conductivity of the SPEs has been found to depend on the salt concentration that was added to the sample. When higher salt concentration was added, ionic conductivity decreased due to the association of ions. The temperature of conductivity from 30 ˚C to 100 ˚C of SPEs was found to obey the Arrhenius rule. The dielectric permittivity decreased rapidly towards high frequencies due to the electrode polarization effects. 


Sign in / Sign up

Export Citation Format

Share Document