scholarly journals Analisis Ketersediaan Air Waduk Gadjah Mungkur dengan Adanya Pembangunan Intake dan Jaringan Pipa Trasmisi Wosusokas

Author(s):  
B.K.P. Cantik ◽  
I.R. Fitriana ◽  
N. Diandra ◽  
S. Valentino ◽  
A.K. Tambing

Gadjah Mungkur Reservoir is one of the multipurpose reservoirs built by damming the flow of the Bengawan Solo River. The Gadjah Mungkur Reservoir has existed for a long time with the main purpose of controlling flooding, but over time, this reservoir is also useful as a hydropower plant, irrigation, and also to meet the raw water needs of Wonogiri City. The potential of the Gadjah Mungkur Reservoir itself in meeting the needs of drinking water is an essential function in the people’s life around the reservoir. Therefore, the expansion of the scope of providing drinking water can be used to develop the potential of the Gadjah Mungkur Reservoir. This coverage expansion was realized through the construction of the Wosusokas intake and transmission pipeline network to drinking water receiving areas, namely Wonogiri, Sukoharjo, Solo, and Karanganyar, with service coverage of drinking water access resepectively ±78,38, ±70,97%, ±81,85%, and ±70,97%. This study aims to analyze the water availability of the Gadjah Mungkur Reservoir with additional coverage for drinking water services. The method used is a simple reservoir routing calculation by processing secondary data obtained in the form of inflow, outflow, and reservoir storage characteristics. The results of the analysis show that elevation variations with the construction of the Wosusokas intake and transmission pipeline have an annual average of +132,56 m in 2017, with a reservoir storage volume reaching 216,27 MCM and +134,29 m in 2018, with a reservoir storage volume reaching 284,92 MCM. However, there are some elevation values that exceed +138,0 m, namely at February to March 2018. However, overall, the results of the analysis show that the Wosusokas construction can increase the potential utilization of the Gadjah Mungkur Reservoir without endangering the reservoir with water level fluctuations that can still be controlled and in accordance with the regulation of reservoir water level.

Water ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 450 ◽  
Author(s):  
Faming Huang ◽  
Xiaoyan Luo ◽  
Weiping Liu

It is significant to study the variations in the stability coefficients of hydrodynamic pressure landslides with different permeability coefficients affected by reservoir water level fluctuations and rainstorms. The Sifangbei landslide in Three Gorges Reservoir area is used as case study. Its stability coefficients are simulated based on saturated-unsaturated seepage theory and finite element analysis. The operating conditions of stability coefficients calculation are reservoir water level variations between 175 m and 145 m, different rates of reservoir water level fluctuations, and a three-day continuous rainstorm. Results show that the stability coefficient of the hydrodynamic pressure landslide decreases with the drawdown of the reservoir water level, and a rapid drawdown rate leads to a small stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. Additionally, the landslide stability coefficient increases as the reservoir water level increases, and a rapid increase in the water level leads to a high stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. The landslide stability coefficient initially decreases and then increases as the reservoir water level declines when the permeability coefficient is greater than 4.64 × 10−5 m/s. Moreover, for structures with the same landslide, the landslide stability coefficient is most sensitive to the change in the rate of reservoir water level drawdown when the permeability coefficient increases from 1.16 × 10−6 m/s to 1.16 × 10−4 m/s. Additionally, the rate of decrease in the stability coefficient increases as the permeability coefficient increases. Finally, the three-day rainstorm leads to a significant reduction in landslide stability, and the rate of decrease in the stability coefficient initially increases and then decreases as the permeability coefficient increases.


Author(s):  
Salomon Obahoundje ◽  
Ernest Amoussou ◽  
Marc Youan Ta ◽  
Lazare Kouakou Kouassi ◽  
Arona Diedhiou

Abstract. Hydropower energy, the main renewable energy source in West Africa, contributes to more than half of the Togo and Benin National electrification. This resource highly depends on water availability in rivers or reservoirs. The water availability heavily relies on climate patterns of the area. In the climate change context, the sustainability of hydropower plants is at risk. This work aims to assess the sensitivity of the Nangbeto hydropower plant to multiyear climate variability using statistical analysis. The results show that energy generation at Nangbeto hydropower is more modulated by four main variables namely inflow to reservoir, water level, rainfall of the actual and the previous year. The energy generation is found to be strongly and significantly correlated to inflow to reservoir, water level, and rainfall. Overall, the Nangbeto hydropower generation is more sensitive to inflow which is controlled by climate variables (rainfall, temperature) and land use/cover change. Therefore, the probable future change in these variables is suggested to be deeply investigated.


2021 ◽  
Author(s):  
Surajit Ghosh ◽  
Atul Kaushik

Monitoring inland water levels is crucial for understanding hydrological processes to climate change impact leading to policy implementation. Satellite altimetry has proved to be an excellent technique to precisely measure water levels of rivers, lakes, and other inland water bodies. The ATL13 product of ICESat-2 space-borne LiDAR is solely dedicated to inland water bodies. The water surface heights were derived from ICESat-2's strong beams, and performance was assessed with respect to reservoir gauge observations. Statistical measurements were used to understand the agreement (R2= 0.99, %RMSE=0.08) among the datasets. An R2 value of 0.99 was observed between ICESat-2 derived water level anomaly and the reservoir storage anomaly. This study provides a unique opportunity to utilize the ATL13 data product to study reservoir water level variation and estimate the reservoir's storage. The methodology can also be helpful to understand the reservoir storage variation in a data-sparse region.


2021 ◽  
Vol 11 (15) ◽  
pp. 7137
Author(s):  
Jinxi Liang ◽  
Wanghua Sui

This paper presents an improved slope stability sensitivity analysis (ISSSA) model that takes anchoring factors into consideration in umbrella-anchored sand and clay slopes under reservoir water level fluctuation. The results of the ISSSA model show that the slope inclination and the layout density of anchors are the main controlling factors for sand slope stability under fluctuation of the water level, while the slope inclination and water head height are the main controlling factors for slope stability in the Cangjiang bridge—Yingpan slope of Yunnan province in China. Moreover, there is an optimum anchorage angle, in the range of 25–45 degrees, which has the greatest influence on slope stability. The fluctuation of the reservoir water level is an important factor that triggers slope instability; in particular, a sudden drop in the surface water level can easily lead to landslides; therefore, corresponding measures should be implemented in a timely manner in order to mitigate landslide disasters.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 201 ◽  
Author(s):  
Shuyang Yu ◽  
Xuhua Ren ◽  
Jixun Zhang ◽  
Haijun Wang ◽  
Junlei Wang ◽  
...  

Evaluation of slope stability under water level fluctuations is an important topic in the Three Gorges Reservoir (TGR) in China. However, most of the previous studies regarded slope soil as isotropic material, or only considered the influence of anisotropy ratio (kr = kx/ky) but ignored the anisotropy direction (α). Meanwhile, the pore pressure–stress coupling was rarely considered in the previous numerical simulations. In the present study, the SIGMA/W and SLOPE/W modules in Geo-studio are utilized to carry out the numerical simulation of Caipo slope under the drawdown of the reservoir water level, and the anisotropy ratio (kr) as well as the anisotropy direction (α) of two kinds of soils (clay and sand) are included. Results show that the anisotropy ratio kr and anisotropy direction α decrease the infiltration capacity of the soil, which increases the infiltration line hysteretic elevation (ILHE) as well as maximum horizontal displacement (MHD), and reduces the minimum safety factor (MSF). The slope toe firstly fails with the drawdown of water level. The influence of reservoir water level drop on seepage, deformation, and stability of the sand slope is less than that of the clay slope. For the sandy soil slope, it is not only necessary to consider the influence of kr, but also the influence of α. For the soil slope, we can only consider α in order to simplify calculation.


2017 ◽  
Vol 54 (5) ◽  
pp. 631-645 ◽  
Author(s):  
Guanhua Sun ◽  
Yongtao Yang ◽  
Shengguo Cheng ◽  
Hong Zheng

Rainfall and reservoir water level fluctuations are the main external factors of landslides in the Three Gorges Reservoir area. To improve the analysis of slope stability under the combined effect of reservoir water level fluctuations and rainfall, a simplified method for phreatic line calculation of slopes is proposed in this study. Based on the obtained phreatic line, the expression of normal stress on the sliding surface of the slope under the hydrodynamic forces is deduced, and a global analysis method to solve the slope safety factor under hydrodynamic force is proposed. Finally, the safety evolution of a slope in the Three Gorges Reservoir area is studied under the combined effect of reservoir water level fluctuations and rainfall.


Sign in / Sign up

Export Citation Format

Share Document