scholarly journals The primary gasotransmitters and their respective donors in the mission of vision (eye health): a comprehensive overview

Author(s):  
Jan Mir ◽  
R Maurya

Nitric oxide (NO) along with Carbon monoxide (CO) and Hydrogen Sulphide (H2S) are biologically significant gaseous molecules generally called as “gasotransmitters”. At a concentration higher or lower than optimum value may result in toxicity or malfunctioning of mammalian tissues. Soon after the acknowledgment of NO as multifunctional bio-signalling molecule in 1987, many interesting implications of this field emerged out. Meanwhile, several studies have proven the NO-biosynthetic pathway responsible for normal functioning of eye. High intraocular pressure (IOP) has been suggested as the main risk factor in this context and collaborative approach with nitric oxide releasers is said to control IOP and hence the relation with glaucoma. Similar miracles were reflected from several other naturally produced gaseous molecules,viz., CO and H2S after year 1990. The biological roles of both these molecules are now widely accepted and in the current era investigations focused mainly with development of efficient CO and H2S releasing compounds. CO and H2S donors are also said to help in normalising IOP like NO. Therefore the trio-gasotransmitters have collective relation with the ophthalmic homeostasis in association with nervous control. On one hand, the antimicrobial efficiency of these three molecules is widely known and on the other hand, their collaborative key-role in ocular nerve functioning makes it remarkable to state here that their donors are supposed to act as a shield for both the infectious as well as the non-infectious eye defects.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan Mohammad Mir ◽  
Ram Charitra Maurya ◽  
Mohd Washid Khan

Abstract A set of well defined signaling molecules responsible for normal functioning of human physiology including nitric oxide along with carbon monoxide and hydrogen sulphide are referred as “gasotransmitters”. Due to their involvement in almost every system of a human body, the care of highly sensitive organs using these molecules as drugs represents highly fascinating area of research. In connection with these interesting aspects, the applied aspects of these gaseous molecules in maintaining healthy eye and vision have been targeted in this review. Several examples of eye-droppers including NORMs like latanoprost and nipradiol, CORMs like CORM-3 and CORM-A1, and Hydrogen sulfide releasing system like GYY4137 have been discussed in this context. Therefore the relation of these trio-gasotransmitters with the ophthalmic homeostasis on one hand, and de-infecting role on the other hand has been mainly highlighted. Some molecular systems capable of mimicking gasotransmitter action have also been introduced in connection with the titled theme.


Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


2019 ◽  
Vol 26 (31) ◽  
pp. 5764-5780 ◽  
Author(s):  
Svetlana I. Galkina ◽  
Ekaterina A. Golenkina ◽  
Galina M. Viryasova ◽  
Yulia M. Romanova ◽  
Galina F. Sud’ina

Background: Nitric Oxide (NO) is a key signalling molecule that has an important role in inflammation. It can be secreted by endothelial cells, neutrophils, and other cells, and once in circulation, NO plays important roles in regulating various neutrophil cellular activities and fate. Objective: To describe neutrophil cellular responses influenced by NO and its concomitant compound peroxynitrite and signalling mechanisms for neutrophil apoptosis. Methods: Literature was reviewed to assess the effects of NO on neutrophils. Results: NO plays an important role in various neutrophil cellular activities and interaction with other cells. The characteristic cellular activities of neutrophils are adhesion and phagocytosis. NO plays a protective role in neutrophil-endothelial interaction by preventing neutrophil adhesion and endothelial cell damage by activated neutrophils. NO suppresses neutrophil phagocytic activity but stimulates longdistance contact interactions through tubulovesicular extensions or cytonemes. Neutrophils are the main source of superoxide, but NO flow results in the formation of peroxynitrite, a compound with high biological activity. Peroxynitrite is involved in the regulation of eicosanoid biosynthesis and inhibits endothelial prostacyclin synthase. NO and peroxynitrite modulate cellular 5-lipoxygenase activity and leukotriene synthesis. Long-term exposure of neutrophils to NO results in the activation of cell death mechanisms and neutrophil apoptosis. Conclusion: Nitric oxide and the NO/superoxide interplay fine-tune mechanisms regulating life and death in neutrophils.


1998 ◽  
Vol 47 (2) ◽  
pp. 151-154 ◽  
Author(s):  
Zlatka Mizhorkova ◽  
Elissaveta Milusheva ◽  
Maria Papasova

2021 ◽  
Vol 22 (23) ◽  
pp. 12824
Author(s):  
Weixin Liu ◽  
Yi Feng ◽  
Suhang Yu ◽  
Zhengqi Fan ◽  
Xinlei Li ◽  
...  

Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.


2019 ◽  
Vol 70 (17) ◽  
pp. 4333-4343 ◽  
Author(s):  
Abhaypratap Vishwakarma ◽  
Aakanksha Wany ◽  
Sonika Pandey ◽  
Mallesham Bulle ◽  
Aprajita Kumari ◽  
...  

AbstractNitric oxide (NO) is now established as an important signalling molecule in plants where it influences growth, development, and responses to stress. Despite extensive research, the most appropriate methods to measure and localize these signalling radicals are debated and still need investigation. Many confounding factors such as the presence of other reactive intermediates, scavenging enzymes, and compartmentation influence how accurately each can be measured. Further, these signalling radicals have short half-lives ranging from seconds to minutes based on the cellular redox condition. Hence, it is necessary to use sensitive and specific methods in order to understand the contribution of each signalling molecule to various biological processes. In this review, we summarize the current knowledge on NO measurement in plant samples, via various methods. We also discuss advantages, limitations, and wider applications of each method.


1995 ◽  
Vol 28 (2) ◽  
pp. 97-106 ◽  
Author(s):  
Eiko Aoki ◽  
Ikuo K. Takeuchi ◽  
Ryujiro Shoji

2018 ◽  
Vol 38 (01) ◽  
pp. 93-104 ◽  
Author(s):  
Amr A. Mohamed ◽  
Mona M. Ali ◽  
Moataza A. Dorrah ◽  
Taha T. M. Bassal

AbstractNitric oxide (NO) plays various roles in insect immunity: as a cytotoxic component and as a signalling molecule; and immune-reactive lysozymes (IrLys) provide a first line of humoral immune functions against invading bacteria. Although there is considerable literature on eicosanoid and biogenic monoamine actions on insect immunity, there is no information on the role(s) of these chemicals in inducing NO and IrLys. We addressed this gap by challenging third instarSarcophaga(Liopygia)argyrostoma(Robineau-Desvoidy) with the Gram-positive bacteriumMicrococcus luteus. Here, we report that bacterial challenge induces elevation of NO and IrLys concentrations in haemocytes and in the fat body. The plasma pool content is comparatively low. Eicosanoid biosynthesis inhibitors (EBIs) lead to suppression of both NO and IrLys levels. Control larvae have low constitutive levels of NO and lysozyme concentrations. Octopamine (OA) elicits elevation of NO and IrLys concentrations. A similar effect is obtained by 5-hydroxytryptamine (5-HT) for NO. These data indicate immune-mediating roles of eicosanoids, OA and 5-HT in NO and IrLys activities.


Sign in / Sign up

Export Citation Format

Share Document