scholarly journals Managing feral pig threats on a tropical floodplain for fisheries values

Author(s):  
Nathan Waltham ◽  
Jason Schaffer

Efforts to protect and restore tropical wetlands impacted by feral pigs (Sus scrofa) in northern Australia have more recently included exclusion fences, an abatement response proposing fences improve wetland condition by protecting habitat for fish production and water quality. Here we tested: 1) whether the fish assemblage are similar in wetlands with and without fences; and 2) whether specific environmental processes influence fish composition differently between fenced and unfenced wetlands. Twenty-one floodplain and riverine wetlands in the Archer River catchment (Queensland) were surveyed during post-wet (June-August) and late-dry season (November-December) in 2016, 2017 and 2018, using a fyke soaked overnight (~14-15hrs). A total of 6,353 fish representing twenty-six species from 15 families were captured. There were no multivariate differences in fish assemblages between seasons, years and for fenced and unfenced wetlands (PERMANOVA, Pseudo-F <0.58, P<0.68). Late-dry season fish were considerably smaller compared to post-wet season: a strategy presumably to maximise rapid disposal following rain. At each wetland a calibrated Hydrolab was deployed (between 2-4 days, with 20min logging) in the epilimnion (0.2m), and revealed distinct diel water quality cycling of temperature, dissolved oxygen and pH (conductivity represented freshwater wetlands) which was more obvious in the late-dry season survey, because of extreme summer conditions. Water quality varied among wetlands, in terms of the daily amplitude, and extent of daily photosynthesis recovery, which highlights the need to consider local site conditions rather than applying general assumptions around water quality conditions for these types of wetlands examined here. Though many fish access (fenced and unfenced) wetlands during wet season connection, the seasonal effect of reduced water level conditions seems to be more over-improvised compared to whether fences are installed or not, as wetlands supported few, juvenile, or no fish species because they had dried completed regardless of whether fences were present or not.

2019 ◽  
Author(s):  
N. J. Waltham ◽  
J. Schaffer

AbstractEfforts to protect and restore tropical wetlands impacted by feral pigs (Sus scrofa) in northern Australia have more recently included exclusion fences, an abatement response proposing fences improve wetland condition by protecting habitat for fish production and water quality. Here we tested: 1) whether the fish assemblage are similar in wetlands with and without fences; and 2) whether specific environmental processes influence fish composition differently between fenced and unfenced wetlands. Twenty-one floodplain and riverine wetlands in the Archer River catchment (Queensland) were surveyed during post-wet (June-August) and late-dry season (November-December) in 2016, 2017 and 2018, using a fyke soaked overnight (~14-15hrs). A total of 6,353 fish representing twenty-six species from 15 families were captured. There were no multivariate differences in fish assemblages between seasons, years and for fenced and unfenced wetlands (PERMANOVA, Pseduo-F <0.58, P<0.68). Late-dry season fish were considerably smaller compared to post-wet season: a strategy presumably to maximise rapid disposal following rain. At each wetland a calibrated Hydrolab was deployed (between 2-4 days, with 20min logging) in the epilimnion (0.2m), and revealed distinct diel water quality cycling of temperature, dissolved oxygen and pH (conductivity represented freshwater wetlands) which was more obvious in the late-dry season survey, because of extreme summer conditions. Water quality varied among wetlands, in terms of the daily amplitude, and extent of daily photosynthesis recovery, which highlights the need to consider local site conditions rather than applying general assumptions around water quality conditions for these types of wetlands examined here. Though many fish access (fenced and unfenced) wetlands during wet season connection, the seasonal effect of reduced water level conditions seems to be more over-improvised compared to whether fences are installed or not, as all wetlands supported few, juvenile, or no fish species because they had dried completed regardless of whether fences were present or not.


Author(s):  
Nathan Waltham ◽  
Jason Schaffer

Installation of feral pig (Sus scrofa) exclusion fences to conserve and rehabilitate coastal floodplain habitat for fish production and water quality services remains untested. Twenty-one floodplain and riverine wetlands in the Archer River catchment (north Queensland) were surveyed during post-wet (June-August) and late-dry season (November-December) in 2016, 2017 and 2018, using a fyke net soaked overnight (~14-15hrs) to test: 1) whether the fish assemblage are similar in wetlands with and without fences; and 2) whether specific environmental conditions influence fish composition between fenced and unfenced wetlands. A total of 6,353 fish representing twenty-six species from 15 families were captured. There were no wetland differences in fish assemblages across seasons, years and for fenced and unfenced (PERMANOVA, Pseudo-F <0.589, P<0.84). Interestingly the late-dry season fish were far smaller compared to post-wet season fish: a strategy presumably in place to maximise rapid disposal following rain and floodplain connectivity. In each wetland a calibrated Hydrolab was deployed (between 2-4 days, with 20min logging) in the epilimnion (0.2m) and revealed distinct diel water quality cycling of temperature, dissolved oxygen and pH (conductivity represented freshwater wetlands), which was more obvious in the late-dry season survey because of extreme summer conditions. Water quality varied among wetlands in terms of the daily amplitude and extent of daily photosynthesis recovery, which highlights the need to consider local conditions and that applying general assumptions around water quality conditions for these types of wetlands is problematic for managers. Though many fish access wetlands during wet season connection, the seasonal effect of reduced water level conditions seems more over-improvised when compared to whether fences are installed, as all wetlands supported few, juvenile, or no fish species because they had dried completely regardless of the presence of fences.


2012 ◽  
Vol 63 (9) ◽  
pp. 788 ◽  
Author(s):  
N. E. Pettit ◽  
T. D. Jardine ◽  
S. K. Hamilton ◽  
V. Sinnamon ◽  
D. Valdez ◽  
...  

The present study indicates the critical role of hydrologic connectivity in floodplain waterholes in the wet–dry tropics of northern Australia. These waterbodies provide dry-season refugia for plants and animals, are a hotspot of productivity, and are a critical part in the subsistence economy of many remote Aboriginal communities. We examined seasonal changes in water quality and aquatic plant cover of floodplain waterholes, and related changes to variation of waterhole depth and visitation by livestock. The waterholes showed declining water quality through the dry season, which was exacerbated by more frequent cattle usage as conditions became progressively drier, which also increased turbidity and nutrient concentrations. Aquatic macrophyte biomass was highest in the early dry season, and declined as the dry season progressed. Remaining macrophytes were flushed out by the first wet-season flows, although they quickly re-establish later during the wet season. Waterholes of greater depth were more resistant to the effects of cattle disturbance, and seasonal flushing of the waterholes with wet-season flooding homogenised the water quality and increased plant cover of previously disparate waterholes. Therefore, maintaining high levels of connectivity between the river and its floodplain is vital for the persistence of these waterholes.


2008 ◽  
Vol 59 (2) ◽  
pp. 97 ◽  
Author(s):  
Thomas S. Rayner ◽  
Bradley J. Pusey ◽  
Richard G. Pearson

Strong relationships between seasonal flooding, instream habitat structure and fish assemblages have been well documented in large tropical rivers (e.g. the flood pulse concept). However, the mechanics of these relationships are likely to differ substantially in smaller coastal rivers, such as those in Costa Rica, south-east Brazil and Australia’s Wet Tropics. These systems typically feature steep upland streams with short, deeply incised lowland channels and poorly connected floodplains. This hypothesis was investigated by documenting spatial and temporal variation in fish-habitat relationships in the Mulgrave River, north-east Queensland. Sampling was conducted at four lowland sites under a range of flow conditions, from dry-season baseflows to a one-in-ten-year flood. Longitudinal environmental gradients and fine-scale habitat patches were important in regulating fish assemblage structure during the dry season. However, high wet-season flows, constrained by the deep channel, acted as disturbances rather than gentle flood-pulses. In particular, the mobilisation of bed sediments led to scouring of aquatic vegetation and a dramatic reduction in habitat heterogeneity. Seasonal movements of fish led to significant changes in assemblage structure – from a community dominated by Neosilurus ater, Hypseleotris compressa, Awaous acritosus and Redigobius bikolanus during the dry season, to one dominated by Nematalosa erebi, Ambassis agrammus and Glossamia aprion during the wet season. Based on these observations, together with information from the literature, a conceptual model of fish-habitat dynamics is presented that is better suited to small tropical rivers than those developed in larger systems with expansive floodplains.


2015 ◽  
Vol 6 (1) ◽  
pp. 179-186
Author(s):  
Akoteyon ◽  
S Isaiah

Water samples collected from fifteen hand dug wells in November (dry season), 2011 and July (Wet season), 2012 using random sampling technique. In situ parameters were measured for pH, electrical conductivity, total dissolved solids using portable meters. Heavy metals were analyzed for; Fe, Cu, Zn, Cd, Pb, and Cr using Atomic Absorption Spectrophotometer (AAS). The study aimed at examining the spatial variations in groundwater quality around dumpsite in Igando using paired sample T-test statistical technique. The result shows that the measured pH values were below the minimum WHO standard for drinking water quality in wet and dry seasons in about73.3% and 26.7% respectively. Also, approximately, 13.3% of EC, and 6.7% exceeded the prescribed standard limit of WHO in dry and wet seasons respectively. Concentration of Fe exceeded drinking water quality in all the sampling locations during wet season and only about 46.7% in dry season. Pb, Zn, and Cu exceeded WHO limit in about 86.7%, 80%, and 26.7% respectively in dry season. Concentration of Pb, Cd , Cu and Cr were under detection limit in all the locations except at locations G2 for Cu in wet season. The paired samples statistics and correlation revealed that the mean values of all the parameters were higher in dry season with the exception of Fe. No significant correlations exist among the paramet er for both seasons at p<0.05. The paired T-test show significant seasonal variations among four heavy metals including Fe, Cd, Pb and Zn.The study concluded that, samples in dry season are of low quality compared to wet. The study recommends public enlightenment on solid waste disposal, controlled anthropogenic activities, and treatment /recycling of waste to prevent heavy metal from leaching unto the sub-surface.DOI: http://dx.doi.org/10.3329/jesnr.v6i1.22063 J. Environ. Sci. & Natural Resources, 6(1): 179-186 2013


2021 ◽  
Vol 17 (10) ◽  
Author(s):  
Kanga Idé Soumaila ◽  
Naimi Mustapha ◽  
Chikhaoui Mohamed

The aim of this study is to access the quality of monitored rivers and to map the polluted river sections in the Sebou basin using Geographic Information System (GIS). The potential causes of water quality variation will also be added for suitable measures to be taken. A Water Quality Index (WQI) which developed in Morocco was applied to 17 river water quality monitoring stations with data on 6 parameters (Dissolved oxygen (DO), ammonium ion (NH4 + ), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), fecal coliforms (FC) and total phosphorus (TP)) collected twice during the wet and dry season over 1990-2017 period. The result shows that river water quality is classified as bad, very bad and medium at 59% of the monitoring stations, while 41% are considered as good to excellent. Interpolation of mean values of overall WQI of the 17 river water quality monitoring stations, revealed evidence of quality degradation along several kilometers of most river sections in the Sebou basin. The correlation matrix between the sub-indices of water quality parameters and the overall WQI showed high positive correlation coefficients and highlights the contribution to water quality degradation as follows: TP (𝑟 = +0.96 ) ≥ NH4 + (𝑟 = +0.96 ) > BOD5 (𝑟 = +0.94) > COD (𝑟 = +0.86) > FC (𝑟 = +0.83) > DO (𝑟 = +0.79). The sections of Fès, Innaounene Rivers, and an extended stretch of Tizguit River must no longer be used for irrigation. River water quality is overall of better quality in the wet season compared to the dry season. Simple linear regressions between the seasonal water quality variation and the overall WQI showed higher coefficients of determination R 2 (0.67 and 0.60) between dry season WQI and the overall WQI and between wet season WQI and the overall WQI respectively. It is clear that discharges of industrial and domestic wastewater during the dry season and agricultural activities are most likely to be the causes of the degradation of river water quality.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Muhammad Lukman ◽  
Andriani Nasir ◽  
Khairul Amri ◽  
Rahmadi Tambaru ◽  
Muhammad Hatta ◽  
...  

ABSTRACT Dissolved silicate (DSi) in coastal waters plays a crucial role in phytoplankton growth particularly diatom. This study aimed to determine DSi concentration seasonally in waters of the western coast of South Sulawesi in relation to coastal water quality indicator. Water, chlorophyll-a, and diatom samples were collected from the coastal areas of the Tallo-Makassar, Maros, and Pangkep, in April 2013 (transitional season), June 2013 (dry season), and February 2014 (wet season). Factorial analysis of variance was used to identify significant seasonal and temporal variations, and linear regression was used to test the relationship of chlorophyll-a and diatom abundance to DSi concentrations. The results showed that the DSi concentration was higher in the wet season of 35.2-85.2 µM than in the other seasons (transitional season: 10.8-68.4 µM, dry season: 9.59-24.1 µM). The abundance of diatoms during the transitional season reached ~9.7x107 cell/m3 in the Pangkep river, 2.3x107 cell/m3 in the Tallo river, and 1.3 x 107 cell/m3 in the Maros river. Chaetoceros, Nitzschia, and Rhizosolenia dominated the diatom composition. The mean concentration of chlorophyll-a in the Makassar coastal waters was 4.52±4.66 mg/m3, while in the Maros and Pangkep waters of 1.40±1.06, and 2.72±1.94  mg/m3, respectively. There was no strong linear corelation between DSi and diatom abundances, nor chlorophyll-a. These results suggested that DSi become a non-limiting factor for the diatom growth and potentially reduce the water quality via eutrophication and diatom blooms. Keywords: dissolved silicate, diatom, chlorophyll-a, coastal waters, South Sulawesi


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lee Nyanti ◽  
Chen-Lin Soo ◽  
Afina-Yian Chundi ◽  
Elsa-Cordelia-Durie Lambat ◽  
Alvinna Tram ◽  
...  

Construction of cascade dams has been shown to have impacts on fish assemblages and biodiversity. Yet, there is no literature on fish assemblages in the Murum River that connects the cascading Bakun and Murum dams in Sarawak, Malaysia. Hence, study on this modified ecosystem is necessitated to better understand the effects of the cascade dam construction on fish fauna. For this, fish samples were caught at five stations located along the river during both dry and wet seasons. Environmental parameters were taken concurrently with fish sampling. Length-weight relationship, condition factors, and diet composition of selected fish species in the river were also determined. The present study demonstrated that there are indications of the impact of cascading dams on the formation of a complex ecosystem in the Murum River, that is, changing from the shallow downstream of the Murum Dam to the deep transitional and inundated zone of the Bakun reservoir. The transitional zone in the Murum River exhibited the lowest fish species diversity, richness, and evenness during the dry season due to low pH and DO coupled with high turbidity. The biological indices improved when the water quality improved during the wet season. On the contrary, the diversity and evenness indices at the inundated tributary station decreased remarkably during the wet season, likely due to the migration of fish during the onset of the rainy season. This study showed that Barbonymus schwanenfeldii has a wider feeding habit which contributes to its higher distribution and abundance in the Murum River. The growth patterns of B. schwanenfeldii, Cyclocheilichthys apogon, Hampala macrolepidota, Lobocheilos ovalis, and Osteochilus enneaporos were better during wet than dry season. Overall, the condition factor of all native fish species in the Murum River was in poor to fair condition, whereas the exotic species, Oreochromis mossambicus, exhibited excellent condition (K value > 2) for both seasons. The increase in the number of O. mossambicus coupled with its high condition factor indicates biological intrusion and a potential threat to the native fish species in the Murum River. Continuous monitoring is essential to detect in-time risk issues associated with environmental degradation and biological invasion in this regulated and inundated river ecosystem.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Muhammad Lukman ◽  
Andriani Nasir ◽  
Khairul Amri ◽  
Rahmadi Tambaru ◽  
Muhammad Hatta ◽  
...  

<p><strong><em>ABSTRACT</em></strong></p> <p><em>Dissolved silicate (DSi) in coastal waters plays a crucial role in phytoplankton</em><em> </em><em>growth particularly diatom</em><em>.</em><em> This study aimed to </em><em>determine</em><em> DSi</em><em> </em><em> concentration </em><em>seasonally </em><em>in waters of the western coast of South Sulawesi in relation to coastal water quality</em><em> indicator. Water, c</em><em>hlorophyll-a</em><em>,</em><em> and diatom samples were collected </em><em>from</em><em> the coastal areas of the Tallo-Makassar, Maros, and Pangkep, in April 2013 (transitional season), June 2013 (dry season), and February 2014 (wet season). Factorial analysis of variance was used to identify significant seasonal and temporal variations, and linear regression was used to test the relationship of chlorophyll-a and diatom abundance to DSi concentrations. The results showed that the DSi concentration was higher in the wet season </em><em>of</em><em> 35.2</em><em>-</em><em>85.2 µM than in the other seasons (transitional season: 10.8</em><em>-</em><em>68.4 µM, dry season: 9.59</em><em>-</em><em>24.1 µM). The abundance of diatoms during the transitional season reached ~9.7x10<sup>7</sup> cell/m<sup>3</sup> in the Pangkep river, 2.3x10<sup>7</sup> cell/m<sup>3</sup> in the Tallo river, and 1.3 x 10<sup>7</sup> cell/m<sup>3</sup> in the Maros river. <span style="text-decoration: underline;">Chaetoceros,</span> <span style="text-decoration: underline;">Nitzschia</span>, and <span style="text-decoration: underline;">Rhizosolenia </span>dominated the diatom composition. The mean concentration of chlorophyll-a in the Makassar coastal waters was 4.52±4.66 mg/m<sup>3</sup></em><em>, </em><em>while in the Maros </em><em>and Pangkep </em><em>waters </em><em>of</em><em> 1.40±1.06</em><em>, and </em><em>2.72±1.94  mg/m<sup>3</sup>,</em><em> respectively.</em><em> There was no strong linear corelation between DSi and diatom abundances, nor chlorophyll-a. These results suggest</em><em>ed</em><em> that DSi become a non-limiting factor for the </em><em>diatom </em><em>growth </em><em>and potentially reduce the water quality via</em><em> eutrophication and diatom blooms. </em></p> <p><strong> </strong></p> <strong><em>Keywords: </em></strong><em>dissolved silicate, diatom, chlorophyll-a, coastal waters, South Sulawesi</em>


2017 ◽  
Vol 15 (1) ◽  
pp. 42-56
Author(s):  
S A ISHOLA ◽  
V MAKINDE ◽  
I C OKEYODE ◽  
F G AKINBORO ◽  
H AYEDUN ◽  
...  

Pollution of wells and borehole water, either from point or non-point sources, has become a matter of health concern both in urban and rural areas. Groundwater is tapped for domestic uses through the con-struction of hand dug wells and boreholes. However, while providing an alternative to the public water supply sources; most of the boreholes are often located too close to possible contamination sources. Various land use and human activities such as solid waste landfills, cemetery and animal wastes, among others can result in ground water contamination. In an open or buried dumping solid waste or sanitary landfill, the organic and inorganic by-products resulting from the decomposition of wastes are leached out by the infiltration of rainfall. A release of leachate to the surrounding soil without proper collection and treatment could contaminate groundwater resources. Many of the wells and boreholes in the study area were found to be indiscriminately located and scattered among such impairing lands/features. This study was therefore aimed at assessing the pollution hazards and vulnerability of groundwater resource in Abe-okuta North Local Government Area (LGA) by sampling some boreholes from selected locations in the area. Water samples were collected and analyzed for water quality parameters using standard proce-dures. The parameters determined were Turbidity, Temperature, Electrical Conductivity (EC), pH, Total Dissolved Solids (TDS) Total Suspended Solids (TSS), Total Solids (TS), Total hardness, cations {Potassium (K), Sodium (Na), Calcium (Ca), Magnesium (Mg), Manganese (Mn), iron (Fe)}, anions {Chloride (Cl-), Nitrate (NO3-), Sulphate (SO42-), Phosphate (PO43-)}, and heavy metals {lead (Pb2+), Zinc (Zn2+), Copper (Cu2+)}. Results were subjected to statistical evaluations using SPSS 18.0 for descriptive statistics and Analysis of Variance (ANOVA). It was observed that the elemental parameters in the bore-holes sampled have mean values of the concentrations of Fe2+, Na+, Cl- , SO42-, Pb2+, Mn2+, Cu2+ and Zn2+ higher during the wet season relative to dry season. For the physico-chemical parameters, it was equally observed that parameters such as EC, TDS, TS, TSS were higher during the wet season than dry season while turbidity, temperature, pH and total hardness were higher during dry season than in the wet season. Water quality parameters such as Fe2+, Pb2+, NO3-, and EC have mean values greater than World Health Organization and NESREA maximum permissible standards for drinking water. Elevated values of these parameters are of great concern to public health when the water from these boreholes is consumed without treatment by people. It is recommended that well and borehole waters in this area be adequately treated before consumption using advanced inorganic removal techniques such as Nano-filtration and Reverse Osmosis to safeguard human health in the study area.Keywords: Boreholes, pollution, water quality, public health, physico-chemical


Sign in / Sign up

Export Citation Format

Share Document