scholarly journals A test of Darwin's naturalization conundrum in birds reveals enhanced invasion success in presence of close relatives

Author(s):  
Daniel Sol ◽  
Joan Garcia-Porta ◽  
César González-Lagos ◽  
Alex Pigot ◽  
Joseph Tobias ◽  
...  

Despite biological invasions are one of the main environmental problems of the twenty-first century, there is still no theoretical or empirical agreement on whether a high phylogenetic relatedness between exotic and native species positively or negatively affect invasion success. To resolve this conundrum, it has been proposed that the effect might be scale-dependent, being negative at smaller spatial scales and positive at larger scales. Here we show that this scale-dependent pattern may be a sampling artefact associated with species-area effects and a non-random pattern of species introductions. We support this conclusion with simulations and empirical data on invaded and non-invaded avian communities in regions from five continents. We further show that at smaller-scales —where these artifacts are negligible— invasion success generally increases with the presence of closely-related species, but that predictive accuracy largely depends on considering the influence of human-related disturbances in facilitating invasions.

2020 ◽  
Vol 13 (5) ◽  
pp. 601-610
Author(s):  
Chris M McGrannachan ◽  
Gillis J Horner ◽  
Melodie A McGeoch

Abstract Aims Darwin’s naturalization hypothesis proposes that successfully established alien species are less closely related to native species due to differences in their ecological niches. Studies have provided support both for and against this hypothesis. One reason for this is the tendency for phylogenetic clustering between aliens and natives at broad spatial scales with overdispersion at fine scales. However, little is known about how the phylogenetic relatedness of alien species alters the phylogenetic structure of the communities they invade, and at which spatial scales effects may manifest. Here, we examine if invaded understorey plant communities, i.e. containing both native and alien taxa, are phylogenetically clustered or overdispersed, how relatedness changes with spatial scale and how aliens affect phylogenetic patterns in understorey communities. Methods Field surveys were conducted in dry forest understorey communities in south-east Australia at five spatial scales (1, 20, 500, 1500 and 4500 m2). Standardized effect sizes of two metrics were used to quantify phylogenetic relatedness between communities and their alien and native subcommunities, and to examine how phylogenetic patterns change with spatial scale: (i) mean pairwise distance and (ii) mean nearest taxon distance (MNTD). Important Findings Aliens were closely related to each other, and this relatedness tended to increase with scale. Native species and the full community exhibited either no clear pattern of relatedness with increasing spatial scale or were no different from random. At intermediate spatial scales (20–500 m2), the whole community tended towards random whereas the natives were strongly overdispersed and the alien subcommunity strongly clustered. This suggests that invasion by closely related aliens shifts community phylogenetic structure from overdispersed towards random. Aliens and natives were distantly related across spatial scales, supporting Darwin’s naturalization hypothesis, but only when phylogenetic distance was quantified as MNTD. Phylogenetic dissimilarity between aliens and natives increased with spatial scale, counter to expected patterns. Our findings suggest that the strong phylogenetic clustering of aliens is driven by human-mediated introductions involving closely related taxa that can establish and spread successfully. Unexpected scale-dependent patterns of phylogenetic relatedness may result from stochastic processes such as fire and dispersal events and suggest that competition and habitat filtering do not exclusively dominate phylogenetic relationships at fine and coarse spatial scales, respectively. Distinguishing between metrics that focus on different evolutionary depths is important, as different metrics can exhibit different scale-dependent patterns.


2014 ◽  
Author(s):  
Abel Valdivia ◽  
John F Bruno ◽  
Courtney Cox ◽  
Serena Hackerott ◽  
Stephanie Green

Biotic resistance is the idea that native species negatively affect the invasion success of introduced species, but whether this can occur at large spatial scales is poorly understood. Here we re-evaluated the hypothesis that native large-bodied grouper and other predators are controlling the abundance of exotic lionfish (Pterois volitans/miles) on Caribbean coral reefs. We assessed the relationship between the biomass of lionfish and native predators at 71 reefs in three biogeographic regions while taking into consideration several cofactors that may affect fish abundance, including among others, proxies for fishing pressure and habitat structural complexity. Our results indicate that the abundance of lionfish, large-bodied grouper and other predators were not negatively related. Lionfish abundance was instead controlled by several physical site characteristics, and possibly by culling. Taken together, our results suggest that managers cannot rely on current native grouper populations to control the lionfish invasion.


Author(s):  
Eva Maria Malecore ◽  
Mark van Kleunen

1. Darwin’s naturalization hypothesis predicts that alien species closely related to native species are less likely to naturalize because of strong competition due to niche overlap. Closely related species are likely to attract similar herbivores and to release similar plant volatiles following herbivore attack, thus could attract the same predators. However, the importance of phylogenetic relatedness on the interaction between alien and native plants has never been tested in a multitrophic context. 2. In a mesocosm experiment we grew six alien target plant species alone and in competition with nine native plant species of varying phylogenetic relatedness. To test the effects of multitrophic interactions on the performance of alien target species, we used enclosure cages to expose plants to the presence and absence of herbivorous arthropods, predatory arthropods and nematodes. 3. Surprisingly, biomass and number of flowering structures increased with presence of competitors for some of the alien species, but overall there was no consistent competition effect. Similarly, we found that none of the multitrophic-interaction treatments affected survival, biomass or number of flowering structures of the alien species. 4. We conclude there was no significant relationship between performance measures of the alien species and their phylogenetic relatedness to the native competitors.


2017 ◽  
Vol 4 (1) ◽  
pp. 160957 ◽  
Author(s):  
Luis D. Verde Arregoitia ◽  
Diana O. Fisher ◽  
Manuel Schweizer

To understand the functional meaning of morphological features, we need to relate what we know about morphology and ecology in a meaningful, quantitative framework. Closely related species usually share more phenotypic features than distant ones, but close relatives do not necessarily have the same ecologies. Rodents are the most diverse group of living mammals, with impressive ecomorphological diversification. We used museum collections and ecological literature to gather data on morphology, diet and locomotion for 208 species of rodents from different bioregions to investigate how morphological similarity and phylogenetic relatedness are associated with ecology. After considering differences in body size and shared evolutionary history, we find that unrelated species with similar ecologies can be characterized by a well-defined suite of morphological features. Our results validate the hypothesized ecological relevance of the chosen traits. These cranial, dental and external (e.g. ears) characters predicted diet and locomotion and showed consistent differences among species with different feeding and substrate use strategies. We conclude that when ecological characters do not show strong phylogenetic patterns, we cannot simply assume that close relatives are ecologically similar. Museum specimens are valuable records of species' phenotypes and with the characters proposed here, morphology can reflect functional similarity, an important component of community ecology and macroevolution.


2014 ◽  
Author(s):  
Abel Valdivia ◽  
John F Bruno ◽  
Courtney Cox ◽  
Serena Hackerott ◽  
Stephanie Green

Biotic resistance is the idea that native species negatively affect the invasion success of introduced species, but whether this can occur at large spatial scales is poorly understood. Here we re-evaluated the hypothesis that native large-bodied grouper and other predators are controlling the abundance of exotic lionfish (Pterois volitans/miles) on Caribbean coral reefs. We assessed the relationship between the biomass of lionfish and native predators at 71 reefs in three biogeographic regions while taking into consideration several cofactors that may affect fish abundance, including among others, proxies for fishing pressure and habitat structural complexity. Our results indicate that the abundance of lionfish, large-bodied grouper and other predators were not negatively related. Lionfish abundance was instead controlled by several physical site characteristics, and possibly by culling. Taken together, our results suggest that managers cannot rely on current native grouper populations to control the lionfish invasion.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 435
Author(s):  
Thijs M. P. Bal ◽  
Alejandro Llanos-Garrido ◽  
Anurag Chaturvedi ◽  
Io Verdonck ◽  
Bart Hellemans ◽  
...  

There is a general and solid theoretical framework to explain how the interplay between natural selection and gene flow affects local adaptation. Yet, to what extent coexisting closely related species evolve collectively or show distinctive evolutionary responses remains a fundamental question. To address this, we studied the population genetic structure and morphological differentiation of sympatric three-spined and nine-spined stickleback. We conducted genotyping-by-sequencing and morphological trait characterisation using 24 individuals of each species from four lowland brackish water (LBW), four lowland freshwater (LFW) and three upland freshwater (UFW) sites in Belgium and the Netherlands. This combination of sites allowed us to contrast populations from isolated but environmentally similar locations (LFW vs. UFW), isolated but environmentally heterogeneous locations (LBW vs. UFW), and well-connected but environmentally heterogenous locations (LBW vs. LFW). Overall, both species showed comparable levels of genetic diversity and neutral genetic differentiation. However, for all three spatial scales, signatures of morphological and genomic adaptive divergence were substantially stronger among populations of the three-spined stickleback than among populations of the nine-spined stickleback. Furthermore, most outlier SNPs in the two species were associated with local freshwater sites. The few outlier SNPs that were associated with the split between brackish water and freshwater populations were located on one linkage group in three-spined stickleback and two linkage groups in nine-spined stickleback. We conclude that while both species show congruent evolutionary and genomic patterns of divergent selection, both species differ in the magnitude of their response to selection regardless of the geographical and environmental context.


2013 ◽  
Vol 101 (4) ◽  
pp. 905-915 ◽  
Author(s):  
Phoebe L. Zarnetske ◽  
Tarik C. Gouhier ◽  
Sally D. Hacker ◽  
Eric W. Seabloom ◽  
Vrushali A. Bokil

2021 ◽  
Vol 66 (1) ◽  
pp. 355-372
Author(s):  
Clément Gilbert ◽  
Jean Peccoud ◽  
Richard Cordaux

Insects are major contributors to our understanding of the interaction between transposable elements (TEs) and their hosts, owing to seminal discoveries, as well as to the growing number of sequenced insect genomes and population genomics and functional studies. Insect TE landscapes are highly variable both within and across insect orders, although phylogenetic relatedness appears to correlate with similarity in insect TE content. This correlation is unlikely to be solely due to inheritance of TEs from shared ancestors and may partly reflect preferential horizontal transfer of TEs between closely related species. The influence of insect traits on TE landscapes, however, remains unclear. Recent findings indicate that, in addition to being involved in insect adaptations and aging, TEs are seemingly at the cornerstone of insect antiviral immunity. Thus, TEs are emerging as essential insect symbionts that may have deleterious or beneficial consequences on their hosts, depending on context.


2017 ◽  
Vol 35 (0) ◽  
Author(s):  
R.M.A. ALVES ◽  
M.B. ALBUQUERQUE ◽  
L.G. BARBOSA

ABSTRACT The species of the Urochloa genus, exotic and infesting in Brazilian waters, are known to be invasive and dominant, occupying from humid, shallow areas, and irrigation canals to margins of deep reservoirs. This paper hypothesis that less depth reservoirs have higher infestation rate and higher biomass of U. arrecta. The objectives were to measure the percentage of occurrence of exotic macrophyte U. arrecta in 40 ecosystems from the Mamanguape basin (Paraíba, Brazil) and determine the infestation of the species in two reservoirs. The acquired data were geo-referenced with the ArcGIS software (v. 9.3). A covariance analysis was performed using the R program (The R project is Statistical Computing). The results showed large spatial distribution of the species, indicating that reservoirs may act as steppingstones in the landscape, in a regional scale. The hypothesis of biotic acceptance is seen as a relevant factor in explaining the presence of the species with low percentage of occurrence in 37 out of the 40 sampled ecosystems, being observed only in areas prone to the colonization of native and naturalized macrophytes, in banks and points of lower declivity, in both spatial scales studied. Thus, factors such as environmental instability (promoted by intermittent or prolonged desiccation of the habitat), shadowing and declivity of the reservoirs synergistically acted on exotic and native species.


Sign in / Sign up

Export Citation Format

Share Document