scholarly journals Strengthening the CAR-T Cell Therapeutic Application using CRISPR/Cas9 Technology

Author(s):  
Muhammad Sadeqi Nezhad ◽  
Mahboubeh Yazdanifar ◽  
Meghdad Abdollahpour-Alitappeh ◽  
Arash Sattari ◽  
Alexander seifalian ◽  
...  

Adoptive cell immunotherapy with chimeric antigen receptor (CAR) T cell has brought a revolutionary means of treatment for aggressive diseases such as hematologic malignancies and solid tumors. Over the last decade, FDA approved three types of CAR-T cells against CD19 hematologic malignancies, including Tisagenlecleucel (Kymriah), Axicabtagene ciloleucel (Yescarta), and Brexucabtagene autoleucel (Tecartus). Despite outstanding results gained from different clinical trials, CAR-T cell therapy is not free from side effects and toxicities, and needs careful investigations and improvements. Gene-editing technology, clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9) system has emerged as a promising tool to address some of the CAR-T therapy hurdles. Using CRISPR/Cas9 technology, CAR expression as well as other cellular pathways can be modified in various ways to enhance CAR-T cell’s anti-tumor function and persistence in immunosuppressive tumor microenvironment. CRISPR/Cas9 technology can also be utilized to reduce CAR-T cells toxicity and side effects. Hereby, we discuss the practical challenges and hurdles related to the accuracy, efficiency, efficacy, safety and delivery of CRISPR/Cas9 technology to the genetically engineered-T cells. Combining of these two state-of-the-art technologies, CRISPR/Cas9 and CAR-T cells, the field of oncology has an extraordinary opportunity to enter a new era of immunotherapy, which offers novel therapeutic options for different types of tumors.

2018 ◽  
Vol 20 (11) ◽  
pp. 1429-1438 ◽  
Author(s):  
Stephen J Bagley ◽  
Arati S Desai ◽  
Gerald P Linette ◽  
Carl H June ◽  
Donald M O’Rourke

Abstract In patients with certain hematologic malignancies, the use of autologous T cells genetically modified to express chimeric antigen receptors (CARs) has led to unprecedented clinical responses. Although progress in solid tumors has been elusive, recent clinical studies have demonstrated the feasibility and safety of CAR T-cell therapy for glioblastoma. In addition, despite formidable barriers to T-cell localization and effector function in glioblastoma, signs of efficacy have been observed in select patients. In this review, we begin with a discussion of established obstacles to systemic therapy in glioblastoma and how these may be overcome by CAR T cells. We continue with a summary of previously published CAR T-cell trials in GBM, and end by outlining the key therapeutic challenges associated with the use of CAR T cells in this disease.


2021 ◽  
Author(s):  
Maryam Akhoundi ◽  
Mahsa Mohammadi ◽  
Seyedeh Saeideh Sahraei ◽  
Mohsen Sheykhhasan ◽  
Nashmin Fayazi

Abstract Background Chimeric antigen receptor (CAR)-modified T cell therapy has shown great potential in the immunotherapy of patients with hematologic malignancies. In spite of this striking achievement, there are still major challenges to overcome in CAR T cell therapy of solid tumors, including treatment-related toxicity and specificity. Also, other obstacles may be encountered in tackling solid tumors, such as their immunosuppressive microenvironment, the heterogeneous expression of cell surface markers, and the cumbersome arrival of T cells at the tumor site. Although several strategies have been developed to overcome these challenges, aditional research aimed at enhancing its efficacy with minimum side effects, the design of precise yet simplified work flows and the possibility to scale-up production with reduced costs and related risks is still warranted.Conclusions Here, we review main strategies to establish a balance between the toxicity and activity of CAR T cells in order to enhance their specificity and surpass immunosuppression. In recent years, many clinical studies have been conducted that eventually led to approved products. To date, the FDA has approved two anti-CD19 CAR T cell products for non-Hodgkin lymphoma therapy, i.e., axicbtagene ciloleucel and tisagenlecleucel. With all the advances that have been made in the field of CAR T cell therapy for hematologic malignancies therapy, ongoing studies are focused on optimizing its efficacy and specificity, as well as reducing the side effects. Also, the efforts are poised to broaden CAR T cell therapeutics for other cancers, especially solid tumors.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 983 ◽  
Author(s):  
Ewelina Grywalska ◽  
Barbara Sosnowska-Pasiarska ◽  
Jolanta Smok-Kalwat ◽  
Marcin Pasiarski ◽  
Paulina Niedźwiedzka-Rystwej ◽  
...  

Despite the significant progress of modern anticancer therapies, multiple myeloma (MM) is still incurable for the majority of patients. Following almost three decades of development, chimeric antigen receptor (CAR) T-cell therapy now has the opportunity to revolutionize the treatment landscape and meet the unmet clinical need. However, there are still several major hurdles to overcome. Here we discuss the recent advances of CAR T-cell therapy for MM with an emphasis on future directions and possible risks. Currently, CAR T-cell therapy for MM is at the first stage of clinical studies, and most studies have focused on CAR T cells targeting B cell maturation antigen (BCMA), but other antigens such as cluster of differentiation 138 (CD138, syndecan-1) are also being evaluated. Although this therapy is associated with side effects, such as cytokine release syndrome and neurotoxicity, and relapses have been observed, the benefit–risk balance and huge potential drive the ongoing clinical progress. To fulfill the promise of recent clinical trial success and maximize the potential of CAR T, future efforts should focus on the reduction of side effects, novel targeted antigens, combinatorial uses of different types of CAR T, and development of CAR T cells targeting more than one antigen.


Author(s):  
Odelaisy León-Triana ◽  
Soukaina Sabir ◽  
Gabriel F. Calvo ◽  
Juan Belmonte-Beitia ◽  
Salvador Chulián ◽  
...  

AbstractImmunotherapies use components of the patient immune system to selectively target cancer cells. The use of CAR T cells to treat B-cell malignancies – leukaemias and lymphomas– is one of the most successful examples, with many patients experiencing long-lasting complete responses to this therapy. This treatment works by extracting the patient’s T cells and adding them the CAR group, which enables them to recognize and target cells carrying the antigen CD19+, that is expressed in these haematological tumors.Here we put forward a mathematical model describing the time response of leukaemias to the injection of CAR T-cells. The model accounts for mature and progenitor B-cells, tumor cells, CAR T cells and side effects by incorporating the main biological processes involved. The model explains the early post-injection dynamics of the different compartments and the fact that the number of CAR T cells injected does not critically affect the treatment outcome. An explicit formula is found that provides the maximum CAR T cell expansion in-vivo and the severity of side effects. Our mathematical model captures other known features of the response to this immunotherapy. It also predicts that CD19+ tumor relapses could be the result of the competition between tumor and CAR T cells analogous to predator-prey dynamics. We discuss this fact on the light of available evidences and the possibility of controlling relapses by early re-challenging of the tumor with stored CAR T cells.


2020 ◽  
Vol 13 (625) ◽  
pp. eaay8248 ◽  
Author(s):  
Benjamin I. Philipson ◽  
Roddy S. O’Connor ◽  
Michael J. May ◽  
Carl H. June ◽  
Steven M. Albelda ◽  
...  

Clinical response to chimeric antigen receptor (CAR) T cell therapy is correlated with CAR T cell persistence, especially for CAR T cells that target CD19+ hematologic malignancies. 4-1BB–costimulated CAR (BBζ) T cells exhibit longer persistence after adoptive transfer than do CD28-costimulated CAR (28ζ) T cells. 4-1BB signaling improves T cell persistence even in the context of 28ζ CAR activation, which indicates distinct prosurvival signals mediated by the 4-1BB cytoplasmic domain. To specifically study signal transduction by CARs, we developed a cell-free, ligand-based activation and ex vivo culture system for CD19-specific CAR T cells. We observed greater ex vivo survival and subsequent expansion of BBζ CAR T cells when compared to 28ζ CAR T cells. We showed that only BBζ CARs activated noncanonical nuclear factor κB (ncNF-κB) signaling in T cells basally and that the anti-CD19 BBζ CAR further enhanced ncNF-κB signaling after ligand engagement. Reducing ncNF-κB signaling reduced the expansion and survival of anti-CD19 BBζ T cells and was associated with a substantial increase in the abundance of the most pro-apoptotic isoforms of Bim. Although our findings do not exclude the importance of other signaling differences between BBζ and 28ζ CARs, they demonstrate the necessary and nonredundant role of ncNF-κB signaling in promoting the survival of BBζ CAR T cells, which likely underlies the engraftment persistence observed with this CAR design.


Author(s):  
Bianca Santomasso ◽  
Carlos Bachier ◽  
Jason Westin ◽  
Katayoun Rezvani ◽  
Elizabeth J. Shpall

Immune effector cells, including T cells and natural killer cells, which are genetically engineered to express a chimeric antigen receptor (CAR), constitute a powerful new class of therapeutic agents to treat patients with hematologic malignancies. Several CAR T-cell trials have shown impressive remission rates in patients with relapsed/refractory hematologic cancers. Although the clinical responses of these agents in hematologic malignancies have been very encouraging, they have also produced substantial morbidity and occasionally mortality resulting from toxicity. With more experience and collaboration, hopefully the toxicities and the costs will come down, increasing the availability of CAR T cells to patients in need.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura Castelletti ◽  
Dannel Yeo ◽  
Nico van Zandwijk ◽  
John E. J. Rasko

AbstractMalignant mesothelioma (MM) is a treatment-resistant tumor originating in the mesothelial lining of the pleura or the abdominal cavity with very limited treatment options. More effective therapeutic approaches are urgently needed to improve the poor prognosis of MM patients. Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a novel potential treatment for this incurable solid tumor. The tumor-associated antigen mesothelin (MSLN) is an attractive target for cell therapy in MM, as this antigen is expressed at high levels in the diseased pleura or peritoneum in the majority of MM patients and not (or very modestly) present in healthy tissues. Clinical trials using anti-MSLN CAR T cells in MM have shown that this potential therapeutic is relatively safe. However, efficacy remains modest, likely due to the MM tumor microenvironment (TME), which creates strong immunosuppressive conditions and thus reduces anti-MSLN CAR T cell tumor infiltration, efficacy and persistence. Various approaches to overcome these challenges are reviewed here. They include local (intratumoral) delivery of anti-MSLN CAR T cells, improved CAR design and co-stimulation, and measures to avoid T cell exhaustion. Combination therapies with checkpoint inhibitors as well as oncolytic viruses are also discussed. Preclinical studies have confirmed that increased efficacy of anti-MSLN CAR T cells is within reach and offer hope that this form of cellular immunotherapy may soon improve the prognosis of MM patients.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1229
Author(s):  
Ali Hosseini Rad S. M. ◽  
Joshua Colin Halpin ◽  
Mojtaba Mollaei ◽  
Samuel W. J. Smith Bell ◽  
Nattiya Hirankarn ◽  
...  

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.


2020 ◽  
Vol 21 (22) ◽  
pp. 8620
Author(s):  
Alain E. Andrea ◽  
Andrada Chiron ◽  
Stéphanie Bessoles ◽  
Salima Hacein-Bey-Abina

Immunoadoptive therapy with genetically modified T lymphocytes expressing chimeric antigen receptors (CARs) has revolutionized the treatment of patients with hematologic cancers. Although clinical outcomes in B-cell malignancies are impressive, researchers are seeking to enhance the activity, persistence, and also safety of CAR-T cell therapy—notably with a view to mitigating potentially serious or even life-threatening adverse events like on-target/off-tumor toxicity and (in particular) cytokine release syndrome. A variety of safety strategies have been developed by replacing or adding various components (such as OFF- and ON-switch CARs) or by combining multi-antigen-targeting OR-, AND- and NOT-gate CAR-T cells. This research has laid the foundations for a whole new generation of therapeutic CAR-T cells. Here, we review the most promising CAR-T cell safety strategies and the corresponding preclinical and clinical studies.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi102-vi103
Author(s):  
Tomás A Martins ◽  
Marie-Françoise Ritz ◽  
Tala Shekarian ◽  
Philip Schmassmann ◽  
Deniz Kaymak ◽  
...  

Abstract The GBM immune tumor microenvironment mainly consists of protumoral glioma-associated microglia and macrophages (GAMs). We have previously shown that blockade of CD47, a ‘don't eat me’-signal overexpressed by GBM cells, rescued GAMs' phagocytic function in mice. However, monotherapy with CD47 blockade has been ineffective in treating human solid tumors to date. Thus, we propose a combinatorial approach of local CAR T cell therapy with paracrine GAM modulation for a synergistic elimination of GBM. We generated humanized EGFRvIII CAR T-cells by lentiviral transduction of healthy donor human T-cells and engineered them to constitutively release a soluble SIRPγ-related protein (SGRP) with high affinity towards CD47. Tumor viability and CAR T-cell proliferation were assessed by timelapse imaging analysis in co-cultures with endogenous EGFRvIII-expressing BS153 cells. Tumor-induced CAR T-cell activation and degranulation were confirmed by flow cytometry. CAR T-cell secretomes were analyzed by liquid chromatography-mass spectrometry. Immunocompromised mice were orthotopically implanted with EGFRvIII+ BS153 cells and treated intratumorally with a single CAR T-cell injection. EGFRvIII and EGFRvIII-SGRP CAR T-cells killed tumor cells in a dose-dependent manner (72h-timepoint; complete cytotoxicity at effector-target ratio 1:1) compared to CD19 controls. CAR T-cells proliferated and specifically co-expressed CD25 and CD107a in the presence of tumor antigen (24h-timepoint; EGFRvIII: 59.3±3.00%, EGFRvIII-SGRP: 52.6±1.42%, CD19: 0.1±0.07%). Differential expression analysis of CAR T-cell secretomes identified SGRP from EGFRvIII-SGRP CAR T-cell supernatants (-Log10qValue/Log2fold-change= 3.84/6.15). Consistent with studies of systemic EGFRvIII CAR T-cell therapy, our data suggest that intratumoral EGFRvIII CAR T-cells were insufficient to eliminate BS153 tumors with homogeneous EGFRvIII expression in mice (Overall survival; EGFRvIII-treated: 20%, CD19-treated: 0%, n= 5 per group). Our current work focuses on the functional characterization of SGRP binding, SGRP-mediated phagocytosis, and on the development of a translational preclinical model of heterogeneous EGFRvIII expression to investigate an additive effect of CAR T-cell therapy and GAM modulation.


Sign in / Sign up

Export Citation Format

Share Document