scholarly journals Impingement, coalescence and mixing of micro-droplets on a solid surface

Author(s):  
Guina Yi ◽  
Ziqi Cai ◽  
Zhengming Gao ◽  
Jos Derksen

The coalescence of an impinging droplet colliding with a sessile droplet at an angle(θi) is investigated by numerical simulation. The range of θi is 0° - 60° and the surface wettability are set as hydrophilic or hydrophobic, and both of them can affect the droplet mergence behavior. By using a modified mixing function, the dimensionless total mixing time τm can be calculated. The results show that there is no clear effect of θi on τm on a hydrophobic surface, while τm increases as θi increases on the hydrophilic surface. With the Weber number(We) ranging from 5.65 to 22.7 and the Ohnesorge number(Oh) ranging from 0.136 to 0.214, we find τm hardly changes with We and Oh. By dividing the mergence and mixing process in a convection and a diffusion stage, we find that the diffusion is much larger than the convection time.

2021 ◽  
Vol 2116 (1) ◽  
pp. 012073
Author(s):  
N. Samkhaniani ◽  
H. Marschall ◽  
A. Stroh ◽  
B. Frohnapfel ◽  
M. Wörner

Abstract The heat transfer of a single water droplet impacting on a heated hydrophobic surface is investigated numerically using a phase field method. The numerical results of the axisymmetric computations show good agreement with the dynamic spreading and subsequent bouncing of the drop observed in an experiment from literature. The influence of Weber number on heat transfer is studied by varying the drop impact velocity in the simulations. For large Weber numbers, good agreement with experimental values of the cooling effectiveness is obtained whereas for low Weber numbers no consistent trend can be identified in the simulations.


2016 ◽  
Vol 879 ◽  
pp. 2524-2527
Author(s):  
Masazumi Okido ◽  
Kensuke Kuroda

Surface hydrophilicity is considered to have a strong influence on the biological reactions of bone-substituting materials. However, the influence of a hydrophilic or hydrophobic surface on the osteoconductivity is not completely clear. In this study, we produced super-hydrophilic and hydrophobic surface on Ti-and Zr-alloys. Hydrothermal treatment at 180 oC for 180 min. in the distilled water and immersion in x5 PBS(-) brought the super-hydrophilic surface (water contact angle < 10 (deg.)) and heat treatment of as-hydrothermaled the hydrophobic surface. The osteoconductivity of the surface treated samples with several water contact angle was evaluated by in vivo testing. The surface properties, especially water contact angle, strongly affected the osteoconductivity and protein adsorbability, and not the surface substance.


1995 ◽  
Vol 73 (S1) ◽  
pp. 609-615 ◽  
Author(s):  
Ralph L. Nicholson ◽  
Hitoshi Kunoh

The establishment of a fungal pathogen on the surface of its host is essential to the success of the infection process. For many fungi, establishment on the host is an active process that may depend on recognition of the host surface through chemical or topographic signals. Events that allow for establishment may be considered to represent the "preparation of the infection court" by the pathogen. This sometimes involves the adhesion of the pathogen to the host and possibly the alteration of the host's surface topography or chemistry. Adhesion is often presumed to be a single, chemically mediated event associated with germ tube or appressorium formation. However, adhesion of ungerminated propagules may also occur, and evidence suggests that it is mediated by the release of adhesive materials directly from the propagule upon contact with a suitable substratum. Fungi may require either a hydrophobic or a hydrophilic surface to initiate the infection process. The barley powdery mildew pathogen, Erysiphe graminis, requires a hydrophilic surface for appressorium formation, yet the barley leaf is extremely hydrophobic. The problem is resolved by the release of an exudate from conidia that makes the hydrophobic leaf surface hydrophilic. In contrast, Colletotrichum graminicola requires a hydrophobic surface for the initiation of its infection process. Ungerminated conidia of this fungus release materials that allow for the rapid adhesion of conidia, which ensures that germination and appressorium formation occur, initiating the infection process. For both fungi, these events happen well in advance of germination and establish the pathogen at the site of the infection court. Key words: adhesion, cuticle, cutinase, surface hydrophobicity, infection process.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
G. Thunivumani ◽  
Hrishikesh Gadgil

An experimental study was conducted to investigate the breakup of a liquid sheet produced by oblique impingement of a liquid jet on a plane solid surface. Experiments are carried out over a wide range of jet Weber number (80–6300) and various jet impingement angles (30 deg, 45 deg, and 60 deg) are employed to study the sheet dynamics. The breakup of a liquid sheet takes place in three modes, closed rim, open rim, and perforated sheet, depending upon the Weber number. The transitions across the modes are also influenced by the impingement angle with the transition Weber number reducing with increase in impingement angle. A modified regime map is proposed to illustrate the role of impingement angle in breakup transitions. A theoretical model based on force balance at the sheet edge is developed to predict the sheet parameters by taking the shear interaction between the sheet and the solid surface into account. The sheet shape predicted by the model fairly matches with the experimentally measured sheet shape. The breakup length and width of the sheet are measured and comparisons with the model predictions show good agreement in closed rim mode of breakup.


2019 ◽  
Vol 360 ◽  
pp. 1177-1187 ◽  
Author(s):  
Xiaoxia Duan ◽  
Xin Feng ◽  
Zai-Sha Mao ◽  
Chao Yang

2011 ◽  
Vol 317-319 ◽  
pp. 2107-2112
Author(s):  
Song Ying Chen ◽  
Fu Chao Xie ◽  
Jun Jie Mao

Based on two different mixing systems: Rotary Jet Mixing (RJM) system and side-entering agitator, two kinds of three-dimensional gasoline components mixing models are established. The incompressible Reynolds equation is selected as the momentum equation and the algorithm of SIMPLE is used to simulate the jet facility. To get the mixing time, moving mesh and the standard k-ε turbulent model has been employed in the multiphase unsteady flow. The results show that the dead areas of RJM are less than side-entering agitator, and the mixing effects are much better. Furthermore, the mixing time of RJM is only 58.2s, which is 69.7% of Side-entering Agitator.


1995 ◽  
Vol 38 (12) ◽  
pp. 2239-2250 ◽  
Author(s):  
E. Lang ◽  
P. Drtina ◽  
F. Streiff ◽  
M. Fleischli

2020 ◽  
Vol 35 ◽  
pp. 18-28
Author(s):  
Muhammad Rubayat Bin Shahadat ◽  
A.K.M.M. Morshed

Non-equilibrium molecular dynamics simulations have been employed to study the explosive boiling phenomena of water over a hot copper plate. The molecular system was comprised of three sections: solid copper wall, liquid water, and water vapor. A few layers of the liquid water were placed on the solid Cu surface. The rest of the simulation box was filled with water vapor. Initially, the water molecules were equilibrated by using Berendsen thermostat at 298 K. Then heat was given to the copper plate at different temperatures so that explosive boiling occurs. After achieving the equilibrium by performing the previous two steps, the liquid water at 298 K is suddenly dropped on the hot plate. NVE ensemble was used in the simulation and the temperature of the copper plate was controlled to different temperatures with phantom atom thermostat. Four temperatures (400K, 500K, 650 K and 1000K) were taken to study the explosive boiling. The simulation results show that, the explosive boiling temperature of water on Cu plate is 500 K temperature. At this point, the energy flux was found 1.79x108 J/m3 which is very promising with the experimental results. Moreover, if the temperature of the surface was increased the explosive boiling occurred at a faster rate. The simulation results also show that explosive boiling occurs earlier for the hydrophilic surface than hydrophobic surface as for the hydrophilic surface the water attracted the Cu plate more than the hydrophobic surface and so the amount of energy transfer is more for the hydrophilic surface.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1311 ◽  
Author(s):  
Marian Kordas ◽  
Maciej Konopacki ◽  
Bartłomiej Grygorcewicz ◽  
Adrian Augustyniak ◽  
Daniel Musik ◽  
...  

Biotechnological processes involving the presence of microorganisms are realized by using various types of stirred tanks or laboratory-scale dual-impeller commercial bioreactor. Hydrodynamics and mass transfer rate are crucial parameters describing the functionality and efficiency of bioreactors. Both parameters strictly depend on mixing applied during bioprocesses conducted in bioreactors. Establishing optimum hydrodynamics conditions for the realized process with microorganisms maximizes the yield of desired products. Therefore, our main objective was to analyze and define the main operational hydrodynamic parameters (including flow field, power consumption, mixing time, and mixing energy) and mass transfer process (in this case, gas–liquid transfer) of two different commercial bioreactors (BioFlo® 115 and BioFlo® 415). The obtained results are allowed using mathematical relationships to describe the analyzed processes that can be used to predict the mixing process and mass transfer ratio in BioFlo® bioreactors. The proposed correlations may be applied for the design of a scaled-up or scaled-down bioreactors.


Sign in / Sign up

Export Citation Format

Share Document