scholarly journals An evolutionary perspective on contemporary genetic load in threatened species to inform future conservation efforts

Author(s):  
Samarth Mathur ◽  
John Tomeček ◽  
Luis Tarango-Arámbula ◽  
Robert Perez ◽  
Andrew DeWoody

In theory, genomic erosion can be reduced in fragile “recipient” populations by translocating individuals from genetically diverse “donor” populations. However, recent simulation studies have argued that such translocations can, in principle, serve as a conduit for new deleterious mutations to enter recipient populations. A reduction in evolutionary fitness is associated with a higher load of deleterious mutations and thus, a better understanding of evolutionary processes driving the empirical distribution of deleterious mutations is crucial. Here, we show that genetic load is evolutionarily dynamic in nature and that demographic history greatly influences the distribution of deleterious mutations over time. Our analyses, based on both demographically explicit simulations as well as whole genome sequences of potential donor-recipient pairs of Montezuma Quail (Cyrtonyx montezumae) populations, indicate that all populations tend to lose deleterious mutations during bottlenecks, but that genetic purging is pronounced in smaller populations with stronger bottlenecks. Despite carrying relatively fewer deleterious mutations, we demonstrate how small, isolated populations are more likely to suffer inbreeding depression as deleterious mutations that escape purging are homogenized due to drift, inbreeding, and ineffective purifying selection. We apply a population genomics framework to showcase how the phylogeography and historical demography of a given species can enlighten genetic rescue efforts. Our data suggest that small, inbred populations should benefit the most when assisted gene flow stems from genetically diverse donor populations that have the lowest proportion of deleterious mutations.

Author(s):  
Alexander Ochoa ◽  
H. Lisle Gibbs

Theory predicts that threatened species living in small populations will experience high levels of inbreeding that will increase their negative genetic load but recent work suggests that the impact of load may be minimized by purging resulting from long term population bottlenecks. Empirical studies that examine this idea using genome-wide estimates of inbreeding and genetic load in threatened species are limited. Here we use genome resequencing data to compare levels of inbreeding, levels of genetic load and population history in threatened Eastern massasauga rattlesnakes (Sistrurus catenatus) which exist in small isolated populations and closely-related yet outbred Western massasauga rattlesnakes (S. tergeminus). In terms of inbreeding, S. catenatus genomes had a greater number of ROHs of varying sizes indicating sustained inbreeding through repeated bottlenecks when compared to S. tergeminus. At the species level, outbred S. tergeminus had higher genome-wide levels of genetic load in the form of greater numbers of derived deleterious mutations compared to S. catenatus presumably due to long-term purging of deleterious mutations in S. catenatus. In contrast, mutations that escaped the “drift sieve” and were polymorphic within S. catenatus populations were more abundant and more often found in homozygote genotypes than in S. tergeminus suggesting a reduced efficiency of purifying selection in smaller S. catenatus populations. Our results support an emerging idea that the historical demography of a threatened species has a significant impact on the type of genetic load present which impacts implementation of conservation actions such as genetic rescue.


2020 ◽  
Author(s):  
Yulin Zhang ◽  
Aaron J. Stern ◽  
Rasmus Nielsen

AbstractInbred populations often suffer from heightened mutational load and decreased fitness due to lower efficiency of purifying selection at small effective population size. Genetic rescue (GR) is a tool that is studied and deployed with the aim of increasing fitness of such inbred populations. The success of GR is known to depend on certain factors that may vary between different populations, such as their demographic history and distribution of dominance effects of mutations. While we understand the effects of these factors on the evolution of overall ancestry in the inbred population after GR, it is less clear what the effect is on local adaptations and their genetic architecture. To this end, we conduct a population genetic simulation study evaluating the effect of several different factors on the efficacy of GR including trait complexity (Mendelian vs. polygenic), dominance effects, and demographic history. We find that the effect on local adaptations depends highly on the mutational load at the time of GR, which is shaped dynamically by interactions between demographic history and dominance effects of deleterious variation. While local adaptations are generally restored post-GR in the long run, in the short term they are often compromised in the process of purging deleterious variation. We also show that while local adaptations are almost always fully restored, the degree to which ancestral genetic variation comprising the trait is replaced by donor variation can vary drastically, and is especially high for complex traits. Our results provide considerations for practical GR and its effects on trait evolution.


2019 ◽  
Author(s):  
Christopher C. Kyriazis ◽  
Robert K. Wayne ◽  
Kirk E. Lohmueller

AbstractHuman-driven habitat fragmentation and loss have led to a proliferation of small and isolated plant and animal populations with high risk of extinction. One of the main threats to extinction in these populations is inbreeding depression, which is primarily caused by the exposure of recessive deleterious mutations as homozygous by inbreeding. The typical approach for managing these populations is to maintain high genetic diversity, often by translocating individuals from large populations to initiate a ‘genetic rescue.’ However, the limitations of this approach have recently been highlighted by the demise of the gray wolf population on Isle Royale, which was driven to the brink of extinction soon after the arrival of a migrant from the large mainland wolf population. Here, we use a novel population genetic simulation framework to investigate the role of genetic diversity, deleterious variation, and demographic history in mediating extinction risk due to inbreeding depression in small populations. We show that, under realistic models of dominance, large populations harbor high levels of recessive strongly deleterious variation due to these mutations being hidden from selection in the heterozygous state. As a result, when large populations contract, they experience a substantially elevated risk of extinction after these strongly deleterious mutations are exposed by inbreeding. Moreover, we demonstrate that although translocating individuals to small populations is broadly effective as a means to reduce extinction risk, using small or moderate-sized source populations rather than large source populations can greatly increase the effectiveness of genetic rescue due to greater purging in these smaller populations. Our findings challenge the traditional conservation paradigm that focuses on maximizing genetic diversity to reduce extinction risk in favor of a view that emphasizes minimizing strongly deleterious variation. These insights have important implications for managing small and isolated populations in the increasingly fragmented landscape of the Anthropocene.Impact SummaryNumerous threats to extinction exist for small populations, including the detrimental effects of inbreeding. Although much of the focus in reducing these harmful effects in small populations has been on maintaining high genetic diversity, here we use simulations to demonstrate that emphasis should instead be placed on minimizing strongly deleterious variation. More specifically, we show that historically-large populations with high levels of genetic diversity also harbor elevated levels of recessive strongly deleterious mutations hidden in the heterozygous state. Thus, when these populations contract, inbreeding can expose these strongly deleterious mutations as homozygous and lead to severe inbreeding depression and rapid extinction. Moreover, we demonstrate that, although translocating individuals to these small populations to perform a ‘genetic rescue’ is broadly beneficial, the effectiveness of this strategy can be greatly increased by targeting historically-smaller source populations where recessive strongly deleterious mutations have been purged. These results challenge long-standing views on how to best conserve small and isolated populations facing the threat of inbreeding depression, and have immediate implications for preserving biodiversity in the increasingly fragmented landscape of the Anthropocene.


2018 ◽  
Author(s):  
Nedda F. Saremi ◽  
Megan A. Supple ◽  
Ashley Byrne ◽  
James A. Cahill ◽  
Luiz Lehmann Coutinho ◽  
...  

Introduction paragraph/AbstractAcross the geographic range of mountain lions, which includes much of North and South America, populations have become increasingly isolated due to human persecution and habitat loss. To explore the genomic consequences of these processes, we assembled a high-quality mountain lion genome and analyzed a panel of resequenced individuals from across their geographic range. We found strong geographical structure and signatures of severe inbreeding in all North American populations. Tracts of homozygosity were rarely shared among populations, suggesting that assisted gene flow would restore local genetic diversity. However, the genome of an admixed Florida panther that descended from a translocated individual from Central America had surprisingly long tracts of homozygosity, indicating that genomic gains from translocation were quickly lost by local inbreeding. Thus, to sustain diversity, genetic rescue will need to occur at regular intervals, through repeated translocations or restoring landscape connectivity. Mountain lions provide a rare opportunity to examine the potential to restore diversity through genetic rescue, and to observe the long-term effects of translocation. Our methods and results provide a framework for genome-wide analyses that can be applied to the management of small and isolated populations.


2020 ◽  
Author(s):  
Danilo Pereira ◽  
Ursula Oggenfuss ◽  
Bruce A. McDonald ◽  
Daniel Croll

AbstractThe activity of transposable elements (TEs) can be an important driver of genetic diversity with TE-mediated mutations having a wide range of fitness consequences. To avoid deleterious effects of TE activity, some fungi evolved highly sophisticated genomic defences to reduce TE proliferation across the genome. Repeat-induced point (RIP) mutations is a fungal-specific TE defence mechanism efficiently targeting duplicated sequences. The rapid accumulation of RIP mutations is expected to deactivate TEs over the course of a few generations. The evolutionary dynamics of TEs at the population level in a species with highly repressive genome defences is poorly understood. Here, we analyze 366 whole-genome sequences of Parastagonospora nodorum, a fungal pathogen of wheat with efficient RIP. A global population genomics analysis revealed high levels of genetic diversity and signs of frequent sexual recombination. Contrary to expectations for a species with RIP, we identified recent TE activity in multiple populations. The TE composition and copy numbers showed little divergence among global populations regardless of the demographic history. Miniature inverted-repeat transposable elements (MITEs) and terminal repeat retrotransposons in miniature (TRIMs) were largely underlying recent intra-species TE expansions. We inferred RIP footprints in individual TE families and found that recently active, high-copy TEs have possibly evaded genomic defences. We find no evidence that recent positive selection acted on TE-mediated mutations rather that purifying selection maintained new TE insertions at low insertion frequencies in populations. Our findings highlight the complex evolutionary equilibria established by the joint action of TE activity, selection and genomic repression.Data SummaryAll Illumina sequence data is available from the NCBI SRA BioProject numbers PRJNA606320, PRJNA398070 and PRJNA476481 (https://www.ncbi.nlm.nih.gov/bioproject). The Methods and Supplementary Figures S1-S11 and Supplementary Tables S1-S4 provide all information on strain locations and outcomes of genome analyses.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ursula Oggenfuss ◽  
Thomas Badet ◽  
Thomas Wicker ◽  
Fanny E Hartmann ◽  
Nikhil Kumar Singh ◽  
...  

Genome evolution is driven by the activity of transposable elements (TEs). The spread of TEs can have deleterious effects including the destabilization of genome integrity and expansions. However, the precise triggers of genome expansions remain poorly understood because genome size evolution is typically investigated only among deeply divergent lineages. Here, we use a large population genomics dataset of 284 individuals from populations across the globe of Zymoseptoria tritici, a major fungal wheat pathogen. We built a robust map of genome-wide TE insertions and deletions to track a total of 2456 polymorphic loci within the species. We show that purifying selection substantially depressed TE frequencies in most populations, but some rare TEs have recently risen in frequency and likely confer benefits. We found that specific TE families have undergone a substantial genome-wide expansion from the pathogen’s center of origin to more recently founded populations. The most dramatic increase in TE insertions occurred between a pair of North American populations collected in the same field at an interval of 25 years. We find that both genome-wide counts of TE insertions and genome size have increased with colonization bottlenecks. Hence, the demographic history likely played a major role in shaping genome evolution within the species. We show that both the activation of specific TEs and relaxed purifying selection underpin this incipient expansion of the genome. Our study establishes a model to recapitulate TE-driven genome evolution over deeper evolutionary timescales.


2021 ◽  
Vol 7 (8) ◽  
Author(s):  
Danilo Pereira ◽  
Ursula Oggenfuss ◽  
Bruce A. McDonald ◽  
Daniel Croll

The activity of transposable elements (TEs) can be an important driver of genetic diversity with TE-mediated mutations having a wide range of fitness consequences. To avoid deleterious effects of TE activity, some fungi have evolved highly sophisticated genomic defences to reduce TE proliferation across the genome. Repeat-induced point mutation (RIP) is a fungal-specific TE defence mechanism efficiently targeting duplicated sequences. The rapid accumulation of RIPs is expected to deactivate TEs over the course of a few generations. The evolutionary dynamics of TEs at the population level in a species with highly repressive genome defences is poorly understood. Here, we analyse 366 whole-genome sequences of Parastagonospora nodorum, a fungal pathogen of wheat with efficient RIP. A global population genomics analysis revealed high levels of genetic diversity and signs of frequent sexual recombination. Contrary to expectations for a species with RIP, we identified recent TE activity in multiple populations. The TE composition and copy numbers showed little divergence among global populations regardless of the demographic history. Miniature inverted-repeat transposable elements (MITEs) and terminal repeat retrotransposons in miniature (TRIMs) were largely underlying recent intra-species TE expansions. We inferred RIP footprints in individual TE families and found that recently active, high-copy TEs have possibly evaded genomic defences. We find no evidence that recent positive selection acted on TE-mediated mutations rather that purifying selection maintained new TE insertions at low insertion frequencies in populations. Our findings highlight the complex evolutionary equilibria established by the joint action of TE activity, selection and genomic repression.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 419 ◽  
Author(s):  
Yann Bourgeois ◽  
Stéphane Boissinot

Transposable elements (TEs) play an important role in shaping genomic organization and structure, and may cause dramatic changes in phenotypes. Despite the genetic load they may impose on their host and their importance in microevolutionary processes such as adaptation and speciation, the number of population genetics studies focused on TEs has been rather limited so far compared to single nucleotide polymorphisms (SNPs). Here, we review the current knowledge about the dynamics of transposable elements at recent evolutionary time scales, and discuss the mechanisms that condition their abundance and frequency. We first discuss non-adaptive mechanisms such as purifying selection and the variable rates of transposition and elimination, and then focus on positive and balancing selection, to finally conclude on the potential role of TEs in causing genomic incompatibilities and eventually speciation. We also suggest possible ways to better model TEs dynamics in a population genomics context by incorporating recent advances in TEs into the rich information provided by SNPs about the demography, selection, and intrinsic properties of genomes.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Having identified small geographically and genetically isolated populations, we need to determine whether they are suffering genetic erosion, and if so, whether there are any other populations to which they could be crossed. We should next ask whether crossing is expected to be harmful or beneficial, and if beneficial, whether the benefits would be large enough to justify a genetic rescue attempt. Here, we address these questions based on the principles established in the preceding chapters.


Sign in / Sign up

Export Citation Format

Share Document