scholarly journals Rhesus macaques compensate for reproductive delay following ecological adversity early in life

Author(s):  
Logan Luevano ◽  
Chris Sutherland ◽  
Raisa Hernández-Pacheco

Adversity early in life can shape the reproductive potential of individuals through negative effects on health and lifespan. However, long-lived populations with multiple reproductive events may present alternative life history strategies to optimize reproductive schedules and compensate for shorter lifespans when experiencing adversities early in life. Here, we quantify the effects of major hurricanes and density-dependence as sources of early-life ecological adversity on the mean age-specific fertility, reproductive pace, and lifetime reproductive success (LRS) of Cayo Santiago rhesus macaque females, and explored demographic mechanisms for reproductive schedule optimization later in life. Females experiencing major hurricanes early in life exhibit a delayed reproductive debut, but maintain inter-birth intervals and show a higher mean fertility during prime reproductive ages relative to females experiencing no hurricanes. Increasing density at birth is associated to a decrease in mean fertility and LRS. When combined, our study reveals that early-life ecological adversities predict a delay-overshoot pattern in mean age-specific fertility that supports the maintenance of LRS. In contrast to predictive adaptive response models of accelerated reproduction, the long-lived Cayo Santiago population presents a novel reproductive strategy where females who experience major natural disasters early in life ultimately overcome their initial reproductive penalty with no overall negative fitness outcomes. Such strategy suggests that investing more energy into development and maintenance at younger ages allows long-lived females experiencing early-life ecological adversity to reproduce at a mean rate equivalent to that of a typical female cohort later in life.

2020 ◽  
Vol 167 (10) ◽  
Author(s):  
Matthew J. Powers ◽  
Ryan J. Weaver ◽  
Kyle B. Heine ◽  
Geoffrey E. Hill

2004 ◽  
Vol 26 (1) ◽  
pp. 45 ◽  
Author(s):  
AD Bilton ◽  
DB Croft

Female reproductive success and the recruitment of offspring to the next generation are key components of animal population dynamics. With an annual commercial harvest of between 13 and 22% of the red kangaroo (Macropus rufus) population, it is increasingly important that these processes are understood. We used data on the reproductive success of 33 free-ranging female M. rufus on Fowlers Gap station in far western New South Wales to determine the expected lifetime reproductive success (LRS) of females within an unharvested population. We also designed a model to generate predictions about female LRS incorporating empirical relationships between a mother?s reproductive success and maternal age, environmental conditions and the sex and survivorship of a previous reproductive attempt. Results from observations on female LRS (calculated from annual weaning rates) and those generated by the model predict that female M. rufus on ?Fowlers Gap? wean, on average, 3.7 young in a lifetime (ranges 0 - 11 and 0 - 20, respectively); representing only 41% of their maximum reproductive potential. Manipulation of initial starting conditions allowed the effect of varying environmental conditions on female LRS to be explored. The condition of the environment when females commence breeding does not appear to significantly affect their overall lifetime reproductive output. However, the occurrence of drought does. Females experiencing two droughts in a lifetime did not live as long and weaned fewer offspring and grandoffspring (from their daughters) than those females experiencing only one drought in a lifetime. In addition to the adverse effect of drought on the reproductive success of female M. rufus in this study, we suggest that, given the relatively high and stable population densities of M. rufus on ?Fowlers Gap?, other mechanisms (acting primarily on juvenile survival) must exist which limit population growth.


2014 ◽  
Vol 128 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Karishma K. Oza ◽  
Jay G. Silverman ◽  
Ietza Bojorquez ◽  
Steffanie A. Strathdee ◽  
Shira M. Goldenberg

Author(s):  
Anke Kloock ◽  
Lena Peters ◽  
Charlotte Rafaluk-Mohr

In most animals, female investment in offspring production is greater than for males. Lifetime reproductive success (LRS) is predicted to be optimized in females through extended lifespans to maximize reproductive events by increased investment in immunity. Males, however, maximize lifetime reproductive success by obtaining as many matings as possible. In populations consisting of mainly hermaphrodites, optimization of reproductive success may be primarily influenced by gamete and resource availability. Microbe-mediated protection (MMP) is known to affect both immunity and reproduction, but whether sex influences the response to MMP remains to be explored. Here, we investigated the sex-specific differences in survival, behavior, and timing of offspring production between feminized hermaphrodite (female) and male Caenorhabditis elegans following pathogenic infection with Staphylococcus aureus with or without MMP by Enterococcus faecalis. Overall, female survival decreased with increased mating. With MMP, females increased investment into offspring production, while males displayed higher behavioral activity. MMP was furthermore able to dampen costs that females experience due to mating with males. These results demonstrate that strategies employed under pathogen infection with and without MMP are sex dependent.


Diversity ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 25 ◽  
Author(s):  
Brooke K. Morrell ◽  
Christopher J. Gobler

Estuaries serve as important nursery habitats for various species of early-life stage fish, but can experience cooccurring acidification and hypoxia that can vary diurnally in intensity. This study examines the effects of acidification (pH 7.2–7.4) and hypoxia (dissolved oxygen (DO) ~ 2–4 mg L−1) as individual and combined stressors on four fitness metrics for three species of forage fish endemic to the U.S. East Coast: Menidia menidia, Menidia beryllina, and Cyprinodon variegatus. Additionally, the impacts of various durations of exposure to these two stressors was also assessed to explore the sensitivity threshold for larval fishes under environmentally-representative conditions. C. variegatus was resistant to chronic low pH, while M. menidia and M. beryllina experienced significantly reduced survival and hatch time, respectively. Exposure to hypoxia resulted in reduced hatch success of both Menidia species, as well as diminished survival of M. beryllina larvae. Diurnal exposure to low pH and low DO for 4 or 8 h did not alter survival of M. beryllina, although 8 or 12 h of daily exposure through the 10 days posthatch significantly depressed larval size. In contrast, M. menidia experienced significant declines in survival for all intervals of diel cycling hypoxia and acidification (4–12 h). Exposure to 12-h diurnal hypoxia generally elicited negative effects equal to, or of greater severity, than chronic exposure to low DO at the same levels despite significantly higher mean DO exposure concentrations. This evidences a substantial biological cost to adapting to changing DO levels, and implicates diurnal cycling of DO as a significant threat to fish larvae in estuaries. Larval responses to hypoxia, and to a lesser extent acidification, in this study on both continuous and diurnal timescales indicate that estuarine conditions throughout the spawning and postspawn periods could adversely affect stocks of these fish, with diverse implications for the remainder of the food web.


2019 ◽  
Vol 8 (4) ◽  
pp. 484 ◽  
Author(s):  
Hongguo Rong ◽  
Xiaozhen Lai ◽  
Elham Mahmoudi ◽  
Hai Fang

Previous studies on the Chinese famine suggested long-term effects of early-life famine exposure on health conditions. This study aims to investigate the association between exposure to the Chinese famine of 1959–1961 at different early-life stages and the risk of cognitive decline in adulthood. A total of 6417 adults born between 1952 and 1964 in the 2015 survey data of China Health and Retirement Longitudinal Study were included in this study. Cognitive performance was estimated through a series of comprehensive neuropsychological tests, including the Telephone Interview of Cognitive Status (TICS-10), word recall, and pentagon drawing. Multiple generalized linear model (GLM) was employed to detect the association between multi-stage early-life famine exposure and late-life cognitive performance. Compared with the unexposed group, respondents exposed to famine in the fetal period performed worse in the TICS (difference −0.52, 95% confidence interval (CI): −0.93 to −0.10), word recall (difference −0.46, 95% CI: −0.74 to −0.19), and general cognition (difference −1.05, 95% CI: −1.64 to −0.47). Furthermore, we also found negative effects of famine exposure on performance of word recall and pentagon drawing in the early (word recall difference −0.56, 95% CI: −1.00 to −0.11; pentagon drawing difference −0.76, 95% CI: −1.40 to −0.12), mid (word recall difference −0.46, 95% CI: −0.81 to −0.11; pentagon drawing difference −0.66, 95% CI: −1.16 to −0.16), and late (word recall difference −0.30, 95% CI: −0.55 to −0.04; pentagon drawing difference −0.75, 95% CI: −1.13 to −0.37) childhood-exposed groups. Early-life famine exposure in different stages is positively associated with late-life cognitive decline. Fetal famine exposure might affect the overall cognitive status in adulthood, and childhood famine exposure has potential adverse effects on visuospatial episodic memory.


2019 ◽  
Vol 28 (5) ◽  
pp. 1127-1137 ◽  
Author(s):  
Justin R. Eastwood ◽  
Michelle L. Hall ◽  
Niki Teunissen ◽  
Sjouke A. Kingma ◽  
Nataly Hidalgo Aranzamendi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document