scholarly journals In silico study predicts a key role of RNA-binding domains 3 and 4 in nucleolin-miRNA interactions.

Author(s):  
Avdar San ◽  
Dario Palmieri ◽  
Anjana Saxena ◽  
Shaneen Singh

RNA binding proteins (RBPs) regulate many important cellular processes through their interactions with RNA molecules. RBPs are critical for post-transcriptional mechanisms keeping gene regulation in a fine equilibrium. Conversely, dysregulation of RBPs and RNA metabolism pathways is an established hallmark of tumorigenesis. Human nucleolin (NCL) is a multifunctional RBP that interacts with different types of RNA molecules, in part through its four RNA binding domains (RBDs). Particularly, NCL interacts directly with microRNAs (miRNAs) and is involved in their aberrant processing linked with many cancers, including breast cancer. Nonetheless, molecular details of the NCL-miRNA interaction remain obscure. In this study, we used an in silico approach to characterize how NCL targets miRNAs and whether this specificity is imposed by a definite RBD-interface. Here, we present structural models of NCL-RBDs and miRNAs, as well as predict scenarios of NCL- miRNA interactions generated using docking algorithms. Our study suggests a predominant role of NCL RBDs 3 and 4 (RBD3-4) in miRNA binding. We provide detailed analyses of specific motifs/residues at the NCL-substrate interface in both these RBDs and miRNAs. Finally, we propose that the evolutionary emergence of more than two RBDs in NCL in higher organisms coincides with its additional role/s in miRNA processing. Our study shows that RBD3-4 display sequence/structural determinants to specifically recognize miRNA precursor molecules. Moreover, the insights from this study can ultimately support the design of novel antineoplastic drugs aimed at regulating NCL-dependent biological pathways with a causal role in tumorigenesis.

2021 ◽  
Author(s):  
Avdar San ◽  
Dario Palmieri ◽  
Anjana Saxena ◽  
Shaneen Singh

RNA binding proteins (RBPs) regulate many important cellular processes through their interactions with RNA molecules. RBPs are critical for post-transcriptional mechanisms keeping gene regulation in a fine equilibrium. Conversely, dysregulation of RBPs and RNA metabolism pathways is an established hallmark of tumorigenesis. Human nucleolin (NCL) is a multifunctional RBP that interacts with different types of RNA molecules, in part through its four RNA binding domains (RBDs). Particularly, NCL interacts directly with microRNAs (miRNAs) and is involved in their aberrant processing linked with many cancers, including breast cancer. Nonetheless, molecular details of the NCL-miRNA interaction remain obscure. In this study, we used an in silico approach to characterize how NCL targets miRNAs and whether this specificity is imposed by a definite RBD-interface. Here, we present structural models of NCL RBDs and miRNAs, as well as predict scenarios of NCL- miRNA interactions generated using docking algorithms. Our study suggests a predominant role of NCL RBDs 3 and 4 (RBD3-4) in miRNA binding. We provide detailed analyses of specific motifs/residues at the NCL-substrate interface in both these RBDs and miRNAs. Finally, we propose that the evolutionary emergence of more than two RBDs in NCL in higher organisms coincides with its additional role/s in miRNA processing. Our study shows that RBD3-4 display sequence/structural determinants to specifically recognize miRNA precursor molecules. Moreover, the insights from this study can ultimately support the design of novel antineoplastic drugs aimed at regulating NCL-dependent biological pathways with a causal role in tumorigenesis.


2021 ◽  
Vol 22 (6) ◽  
pp. 2845
Author(s):  
Vesper Burjoski ◽  
Anireddy S. N. Reddy

RNAs transmit information from DNA to encode proteins that perform all cellular processes and regulate gene expression in multiple ways. From the time of synthesis to degradation, RNA molecules are associated with proteins called RNA-binding proteins (RBPs). The RBPs play diverse roles in many aspects of gene expression including pre-mRNA processing and post-transcriptional and translational regulation. In the last decade, the application of modern techniques to identify RNA–protein interactions with individual proteins, RNAs, and the whole transcriptome has led to the discovery of a hidden landscape of these interactions in plants. Global approaches such as RNA interactome capture (RIC) to identify proteins that bind protein-coding transcripts have led to the identification of close to 2000 putative RBPs in plants. Interestingly, many of these were found to be metabolic enzymes with no known canonical RNA-binding domains. Here, we review the methods used to analyze RNA–protein interactions in plants thus far and highlight the understanding of plant RNA–protein interactions these techniques have provided us. We also review some recent protein-centric, RNA-centric, and global approaches developed with non-plant systems and discuss their potential application to plants. We also provide an overview of results from classical studies of RNA–protein interaction in plants and discuss the significance of the increasingly evident ubiquity of RNA–protein interactions for the study of gene regulation and RNA biology in plants.


2018 ◽  
Author(s):  
Arttu Jolma ◽  
Jilin Zhang ◽  
Estefania Mondragón ◽  
Ekaterina Morgunova ◽  
Teemu Kivioja ◽  
...  

ABSTRACTSequence specific RNA-binding proteins (RBPs) control many important processes affecting gene expression. They regulate RNA metabolism at multiple levels, by affecting splicing of nascent transcripts, RNA folding, base modification, transport, localization, translation and stability. Despite their central role in most aspects of RNA metabolism and function, most RBP binding specificities remain unknown or incompletely defined. To address this, we have assembled a genome-scale collection of RBPs and their RNA binding domains (RBDs), and assessed their specificities using high throughput RNA-SELEX (HTR-SELEX). Approximately 70% of RBPs for which we obtained a motif bound to short linear sequences, whereas ~30% preferred structured motifs folding into stem-loops. We also found that many RBPs can bind to multiple distinctly different motifs. Analysis of the matches of the motifs in human genomic sequences suggested novel roles for many RBPs. We found that three cytoplasmic proteins, ZC3H12A, ZC3H12B and ZC3H12C bound to motifs resembling the splice donor sequence, suggesting that these proteins are involved in degradation of cytoplasmic viral and/or unspliced transcripts. Surprisingly, structural analysis revealed that the RNA motif was not bound by the conventional C3H1 RNA-binding domain of ZC3H12B. Instead, the RNA motif was bound by the ZC3H12B’s PilT N-terminus (PIN) RNase domain, revealing a potential mechanism by which unconventional RNA binding domains containing active sites or molecule-binding pockets could interact with short, structured RNA molecules. Our collection containing 145 high resolution binding specificity models for 86 RBPs is the largest systematic resource for the analysis of human RBPs, and will greatly facilitate future analysis of the various biological roles of this important class of proteins.


Author(s):  
Danae Campos-Melo ◽  
Zachary C. E. Hawley ◽  
Cristian A. Droppelmann ◽  
Michael J. Strong

Stress granules (SGs) are phase-separated, membraneless, cytoplasmic ribonucleoprotein (RNP) assemblies whose primary function is to promote cell survival by condensing translationally stalled mRNAs, ribosomal components, translation initiation factors, and RNA-binding proteins (RBPs). While the protein composition and the function of proteins in the compartmentalization and the dynamics of assembly and disassembly of SGs has been a matter of study for several years, the role of RNA in these structures had remained largely unknown. RNA species are, however, not passive members of RNA granules in that RNA by itself can form homo and heterotypic interactions with other RNA molecules leading to phase separation and nucleation of RNA granules. RNA can also function as molecular scaffolds recruiting multivalent RBPs and their interactors to form higher-order structures. With the development of SG purification techniques coupled to RNA-seq, the transcriptomic landscape of SGs is becoming increasingly understood, revealing the enormous potential of RNA to guide the assembly and disassembly of these transient organelles. SGs are not only formed under acute stress conditions but also in response to different diseases such as viral infections, cancer, and neurodegeneration. Importantly, these granules are increasingly being recognized as potential precursors of pathological aggregates in neurodegenerative diseases. In this review, we examine the current evidence in support of RNA playing a significant role in the formation of SGs and explore the concept of SGs as therapeutic targets.


Author(s):  
Mahsa Rasekhian ◽  
Farzin Roohvand ◽  
Solomon Habtemariam ◽  
Marzieh Marzbany ◽  
Monireh Kazemimanesh

: The central dogma of molecular biology explains the flow of genetic information from DNA to functional products such as proteins. In most cases, a linear relationship with high correlation coefficient exists between the concentration of mRNA, the middle man, and the functional product. Untranslated regions (UTRs) of RNA form considerable base pairing that contributes to the secondary and tertiary structures of mRNA. The interaction between the mRNA secondary structures (cis-elements), RNA-binding proteins (RBP) and miRs (trans-element) are critical determinants of mRNAs' fate and stability. Among different viral families, the positive sense (+) RNA viruses use the simplest possible strategy of replication and expression; as the same molecule functions both as a genome and mRNA. Additionally, nucleotide composition and codon usage of +RNA viruses are the closest to human codon adaptation index (CAI). Since the origin of replication of viral intermediate RNA molecules is at the 3'-end of the genome, the 3'UTR plays a role in viral RNA replication. Moreover, the messenger role of RNA likely places functional demands on the 3'UTR to serve a role typical of cellular mRNA. This article reviews the effect of 3'UTR of RNA viruses with positive sense and genomes on mRNA stability and translation improvement. A range of animal (e.g., Dengue, Sindbis, Corona and Polio) and plant (Barley yellow dwarf, Brome mosaic, Turnip crinkle, Tobacco mosaic, Cowpea mosaic and Alfalfa mosaic) viruses are examined to highlight the role of 3'UTR in viral survival and as a potential target for pharmaceutical applications.


2021 ◽  
Author(s):  
Vaishali ◽  
Lyudmila Dimitrova-Paternoga ◽  
Kevin Haubrich ◽  
Mai Sun ◽  
Anne Ephrussi ◽  
...  

AbstractRNA binding proteins (RBPs) take part in all steps of the RNA life cycle and are often essential for cell viability. Most RBPs have a modular organization and comprise a set of canonical RNA binding domains. However, in recent years a number of high-throughput mRNA interactome studies on yeast, mammalian cell lines and whole organisms have uncovered a multitude of novel mRNA interacting proteins that lack classical RNA binding domains. Whereas a few have been confirmed to be direct and functionally relevant RNA binders, biochemical and functional validation of RNA binding of most others is lacking. In this study, we employed a combination of NMR spectroscopy and biochemical studies to test the RNA binding properties of six putative RNA binding proteins. Half of the analysed proteins showed no interaction, whereas the other half displayed weak chemical shift perturbations upon titration with RNA. One of the candidates we found to interact weakly with RNA in vitro is Drosophila melanogaster End binding protein 1 (EB1), a master regulator of microtubule plus-end dynamics. Further analysis showed that EB1’s RNA binding occurs on the same surface as that with which EB1 interacts with microtubules. RNA immunoprecipitation and colocalization experiments suggest that EB1 is a rather non-specific, opportunistic RNA binder. Our data suggest that care should be taken when embarking on an RNA binding study involving these unconventional, novel RBPs, and we recommend initial and simple in vitro RNA binding experiments.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhigang Li ◽  
Qingyu Guo ◽  
Jiaxin Zhang ◽  
Zitong Fu ◽  
Yifei Wang ◽  
...  

The RNA-binding motif (RBM) proteins are a class of RNA-binding proteins named, containing RNA-recognition motifs (RRMs), RNA-binding domains, and ribonucleoprotein motifs. RBM proteins are involved in RNA metabolism, including splicing, transport, translation, and stability. Many studies have found that aberrant expression and dysregulated function of RBM proteins family members are closely related to the occurrence and development of cancers. This review summarizes the role of RBM proteins family genes in cancers, including their roles in cancer occurrence and cell proliferation, migration, and apoptosis. It is essential to understand the mechanisms of these proteins in tumorigenesis and development, and to identify new therapeutic targets and prognostic markers.


2017 ◽  
Vol 12 (12) ◽  
pp. 2447-2464 ◽  
Author(s):  
Alfredo Castello ◽  
Christian K. Frese ◽  
Bernd Fischer ◽  
Aino I Järvelin ◽  
Rastislav Horos ◽  
...  

2010 ◽  
Vol 153 (1) ◽  
pp. 273-284 ◽  
Author(s):  
Glwadys Rausin ◽  
Vinciane Tillemans ◽  
Nancy Stankovic ◽  
Marc Hanikenne ◽  
Patrick Motte

Sign in / Sign up

Export Citation Format

Share Document