scholarly journals The Landscape of RNA-Protein Interactions in Plants: Approaches and Current Status

2021 ◽  
Vol 22 (6) ◽  
pp. 2845
Author(s):  
Vesper Burjoski ◽  
Anireddy S. N. Reddy

RNAs transmit information from DNA to encode proteins that perform all cellular processes and regulate gene expression in multiple ways. From the time of synthesis to degradation, RNA molecules are associated with proteins called RNA-binding proteins (RBPs). The RBPs play diverse roles in many aspects of gene expression including pre-mRNA processing and post-transcriptional and translational regulation. In the last decade, the application of modern techniques to identify RNA–protein interactions with individual proteins, RNAs, and the whole transcriptome has led to the discovery of a hidden landscape of these interactions in plants. Global approaches such as RNA interactome capture (RIC) to identify proteins that bind protein-coding transcripts have led to the identification of close to 2000 putative RBPs in plants. Interestingly, many of these were found to be metabolic enzymes with no known canonical RNA-binding domains. Here, we review the methods used to analyze RNA–protein interactions in plants thus far and highlight the understanding of plant RNA–protein interactions these techniques have provided us. We also review some recent protein-centric, RNA-centric, and global approaches developed with non-plant systems and discuss their potential application to plants. We also provide an overview of results from classical studies of RNA–protein interaction in plants and discuss the significance of the increasingly evident ubiquity of RNA–protein interactions for the study of gene regulation and RNA biology in plants.

2020 ◽  
Vol 21 (18) ◽  
pp. 6835
Author(s):  
Jonas Weiße ◽  
Julia Rosemann ◽  
Vanessa Krauspe ◽  
Matthias Kappler ◽  
Alexander W. Eckert ◽  
...  

Nearly 7.5% of all human protein-coding genes have been assigned to the class of RNA-binding proteins (RBPs), and over the past decade, RBPs have been increasingly recognized as important regulators of molecular and cellular homeostasis. RBPs regulate the post-transcriptional processing of their target RNAs, i.e., alternative splicing, polyadenylation, stability and turnover, localization, or translation as well as editing and chemical modification, thereby tuning gene expression programs of diverse cellular processes such as cell survival and malignant spread. Importantly, metastases are the major cause of cancer-associated deaths in general, and particularly in oral cancers, which account for 2% of the global cancer mortality. However, the roles and architecture of RBPs and RBP-controlled expression networks during the diverse steps of the metastatic cascade are only incompletely understood. In this review, we will offer a brief overview about RBPs and their general contribution to post-transcriptional regulation of gene expression. Subsequently, we will highlight selected examples of RBPs that have been shown to play a role in oral cancer cell migration, invasion, and metastasis. Last but not least, we will present targeting strategies that have been developed to interfere with the function of some of these RBPs.


Author(s):  
Avdar San ◽  
Dario Palmieri ◽  
Anjana Saxena ◽  
Shaneen Singh

RNA binding proteins (RBPs) regulate many important cellular processes through their interactions with RNA molecules. RBPs are critical for post-transcriptional mechanisms keeping gene regulation in a fine equilibrium. Conversely, dysregulation of RBPs and RNA metabolism pathways is an established hallmark of tumorigenesis. Human nucleolin (NCL) is a multifunctional RBP that interacts with different types of RNA molecules, in part through its four RNA binding domains (RBDs). Particularly, NCL interacts directly with microRNAs (miRNAs) and is involved in their aberrant processing linked with many cancers, including breast cancer. Nonetheless, molecular details of the NCL-miRNA interaction remain obscure. In this study, we used an in silico approach to characterize how NCL targets miRNAs and whether this specificity is imposed by a definite RBD-interface. Here, we present structural models of NCL-RBDs and miRNAs, as well as predict scenarios of NCL- miRNA interactions generated using docking algorithms. Our study suggests a predominant role of NCL RBDs 3 and 4 (RBD3-4) in miRNA binding. We provide detailed analyses of specific motifs/residues at the NCL-substrate interface in both these RBDs and miRNAs. Finally, we propose that the evolutionary emergence of more than two RBDs in NCL in higher organisms coincides with its additional role/s in miRNA processing. Our study shows that RBD3-4 display sequence/structural determinants to specifically recognize miRNA precursor molecules. Moreover, the insights from this study can ultimately support the design of novel antineoplastic drugs aimed at regulating NCL-dependent biological pathways with a causal role in tumorigenesis.


2021 ◽  
Author(s):  
Avdar San ◽  
Dario Palmieri ◽  
Anjana Saxena ◽  
Shaneen Singh

RNA binding proteins (RBPs) regulate many important cellular processes through their interactions with RNA molecules. RBPs are critical for post-transcriptional mechanisms keeping gene regulation in a fine equilibrium. Conversely, dysregulation of RBPs and RNA metabolism pathways is an established hallmark of tumorigenesis. Human nucleolin (NCL) is a multifunctional RBP that interacts with different types of RNA molecules, in part through its four RNA binding domains (RBDs). Particularly, NCL interacts directly with microRNAs (miRNAs) and is involved in their aberrant processing linked with many cancers, including breast cancer. Nonetheless, molecular details of the NCL-miRNA interaction remain obscure. In this study, we used an in silico approach to characterize how NCL targets miRNAs and whether this specificity is imposed by a definite RBD-interface. Here, we present structural models of NCL RBDs and miRNAs, as well as predict scenarios of NCL- miRNA interactions generated using docking algorithms. Our study suggests a predominant role of NCL RBDs 3 and 4 (RBD3-4) in miRNA binding. We provide detailed analyses of specific motifs/residues at the NCL-substrate interface in both these RBDs and miRNAs. Finally, we propose that the evolutionary emergence of more than two RBDs in NCL in higher organisms coincides with its additional role/s in miRNA processing. Our study shows that RBD3-4 display sequence/structural determinants to specifically recognize miRNA precursor molecules. Moreover, the insights from this study can ultimately support the design of novel antineoplastic drugs aimed at regulating NCL-dependent biological pathways with a causal role in tumorigenesis.


2019 ◽  
Vol 14 (7) ◽  
pp. 621-627 ◽  
Author(s):  
Youhuang Bai ◽  
Xiaozhuan Dai ◽  
Tiantian Ye ◽  
Peijing Zhang ◽  
Xu Yan ◽  
...  

Background: Long noncoding RNAs (lncRNAs) are endogenous noncoding RNAs, arbitrarily longer than 200 nucleotides, that play critical roles in diverse biological processes. LncRNAs exist in different genomes ranging from animals to plants. Objective: PlncRNADB is a searchable database of lncRNA sequences and annotation in plants. Methods: We built a pipeline for lncRNA prediction in plants, providing a convenient utility for users to quickly distinguish potential noncoding RNAs from protein-coding transcripts. Results: More than five thousand lncRNAs are collected from four plant species (Arabidopsis thaliana, Arabidopsis lyrata, Populus trichocarpa and Zea mays) in PlncRNADB. Moreover, our database provides the relationship between lncRNAs and various RNA-binding proteins (RBPs), which can be displayed through a user-friendly web interface. Conclusion: PlncRNADB can serve as a reference database to investigate the lncRNAs and their interaction with RNA-binding proteins in plants. The PlncRNADB is freely available at http://bis.zju.edu.cn/PlncRNADB/.


2021 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Mrinmoyee Majumder ◽  
Viswanathan Palanisamy

Control of gene expression is critical in shaping the pro-and eukaryotic organisms’ genotype and phenotype. The gene expression regulatory pathways solely rely on protein–protein and protein–nucleic acid interactions, which determine the fate of the nucleic acids. RNA–protein interactions play a significant role in co- and post-transcriptional regulation to control gene expression. RNA-binding proteins (RBPs) are a diverse group of macromolecules that bind to RNA and play an essential role in RNA biology by regulating pre-mRNA processing, maturation, nuclear transport, stability, and translation. Hence, the studies aimed at investigating RNA–protein interactions are essential to advance our knowledge in gene expression patterns associated with health and disease. Here we discuss the long-established and current technologies that are widely used to study RNA–protein interactions in vivo. We also present the advantages and disadvantages of each method discussed in the review.


2021 ◽  
Vol 9 (3) ◽  
pp. 34
Author(s):  
Thomas E. Forman ◽  
Brenna J. C. Dennison ◽  
Katherine A. Fantauzzo

Cranial neural crest (NC) cells delaminate from the neural folds in the forebrain to the hindbrain during mammalian embryogenesis and migrate into the frontonasal prominence and pharyngeal arches. These cells generate the bone and cartilage of the frontonasal skeleton, among other diverse derivatives. RNA-binding proteins (RBPs) have emerged as critical regulators of NC and craniofacial development in mammals. Conventional RBPs bind to specific sequence and/or structural motifs in a target RNA via one or more RNA-binding domains to regulate multiple aspects of RNA metabolism and ultimately affect gene expression. In this review, we discuss the roles of RBPs other than core spliceosome components during human and mouse NC and craniofacial development. Where applicable, we review data on these same RBPs from additional vertebrate species, including chicken, Xenopus and zebrafish models. Knockdown or ablation of several RBPs discussed here results in altered expression of transcripts encoding components of developmental signaling pathways, as well as reduced cell proliferation and/or increased cell death, indicating that these are common mechanisms contributing to the observed phenotypes. The study of these proteins offers a relatively untapped opportunity to provide significant insight into the mechanisms underlying gene expression regulation during craniofacial morphogenesis.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1475
Author(s):  
Veronica Ruta ◽  
Vittoria Pagliarini ◽  
Claudio Sette

Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Dustin Haskell ◽  
Anna Zinovyeva

Abstract MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) regulate gene expression at the post-transcriptional level, but the extent to which these key regulators of gene expression coordinate their activities and the precise mechanisms of this coordination are not well understood. RBPs often have recognizable RNA binding domains that correlate with specific protein function. Recently, several RBPs containing K homology (KH) RNA binding domains were shown to work with miRNAs to regulate gene expression, raising the possibility that KH domains may be important for coordinating with miRNA pathways in gene expression regulation. To ascertain whether additional KH domain proteins functionally interact with miRNAs during Caenorhabditis elegans development, we knocked down twenty-four genes encoding KH-domain proteins in several miRNA sensitized genetic backgrounds. Here, we report that a majority of the KH domain-containing genes genetically interact with multiple miRNAs and Argonaute alg-1. Interestingly, two KH domain genes, predicted splicing factors sfa-1 and asd-2, genetically interacted with all of the miRNA mutants tested, whereas other KH domain genes showed genetic interactions only with specific miRNAs. Our domain architecture and phylogenetic relationship analyses of the C. elegans KH domain-containing proteins revealed potential groups that may share both structure and function. Collectively, we show that many C. elegans KH domain RBPs functionally interact with miRNAs, suggesting direct or indirect coordination between these two classes of post-transcriptional gene expression regulators.


2021 ◽  
Author(s):  
Sarah E Cabral ◽  
Kimberly Mowry

RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular and developmental polarity. While enrichment of RNAs and RNA-binding proteins (RBPs) is a hallmark of both processes, the functional and structural roles of RNA-RNA and RNA-protein interactions within condensates remain unclear. Recent work from our laboratory has shown that RNAs required for germ layer patterning in Xenopus oocytes localize in novel biomolecular condensates, termed Localization bodies (L-bodies). L-bodies are composed of a non-dynamic RNA phase enmeshed in a more dynamic protein-containing phase. However, the interactions that drive the biophysical characteristics of L-bodies are not known. Here, we test the role of RNA-protein interactions using an L-body RNA-binding protein, PTBP3, which contains four RNA-binding domains (RBDs). We find that binding of RNA to PTB is required for both RNA and PTBP3 to be enriched in L-bodies in vivo. Importantly, while RNA binding to a single RBD is sufficient to drive PTBP3 localization to L-bodies, interactions between multiple RRMs and RNA tunes the dynamics of PTBP3 within L-bodies. In vitro, recombinant PTBP3 phase separates into non-dynamic structures in an RNA-dependent manner, supporting a role for RNA-protein interactions as a driver of both recruitment of components to L-bodies and the dynamics of the components after enrichment. Our results point to a model where RNA serves as a concentration-dependent, non-dynamic substructure and multivalent interactions with RNA are a key driver of protein dynamics.


2020 ◽  
Vol 21 (8) ◽  
pp. 2969 ◽  
Author(s):  
Katharina Jonas ◽  
George A. Calin ◽  
Martin Pichler

The majority of the genome is transcribed into pieces of non-(protein) coding RNA, among which long non-coding RNAs (lncRNAs) constitute a large group of particularly versatile molecules that govern basic cellular processes including transcription, splicing, RNA stability, and translation. The frequent deregulation of numerous lncRNAs in cancer is known to contribute to virtually all hallmarks of cancer. An important regulatory mechanism of lncRNAs is the post-transcriptional regulation mediated by RNA-binding proteins (RBPs). So far, however, only a small number of known cancer-associated lncRNAs have been found to be regulated by the interaction with RBPs like human antigen R (HuR), ARE/poly(U)-binding/degradation factor 1 (AUF1), insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), and tristetraprolin (TTP). These RBPs regulate, by various means, two aspects in particular, namely the stability and the localization of lncRNAs. Importantly, these RBPs themselves are commonly deregulated in cancer and might thus play a major role in the deregulation of cancer-related lncRNAs. There are, however, still many open questions, for example regarding the context specificity of these regulatory mechanisms that, in part, is based on the synergistic or competitive interaction between different RBPs. There is also a lack of knowledge on how RBPs facilitate the transport of lncRNAs between different cellular compartments.


Sign in / Sign up

Export Citation Format

Share Document