scholarly journals Analysis of Cruciferin Content in Whole Seeds of Brassica napus L. by Near-Infrared Spectroscopy

Author(s):  
Ashley Ammeter ◽  
Kenny So ◽  
Rob Duncan

Globally, there is an increasing demand for sources of plant-based protein. While Brassica napus L. is an important oilseed crop worldwide, there is also interest in improving its ability to serve as a valuable source of plant-based protein. Cruciferin, a seed storage protein that makes up 60% of the protein found in mature seeds of B. napus, is of interest for human consumption as a source of protein and as an ingredient in food products due to its functional properties. Existing methods for quantification of cruciferin protein are often time consuming and destroy the seed. This study explored the potential for the measurement of cruciferin protein content in whole seeds of B. napus by near-infrared spectroscopy (NIRS), to allow for efficient and non-destructive screening of breeding material. An enzyme-linked immunosorbent assay (ELISA)-based reference method was utilized to assess cruciferin content in a diverse population of B. napus. Scanning of whole seed samples produced spectra that were used to develop NIRS calibration equations. Statistical analysis of the calibration results indicated that the NIRS equations developed are poorly suited for prediction of cruciferin content.

2021 ◽  
Vol 271 ◽  
pp. 03067
Author(s):  
Xiaohong He ◽  
Zhihong Song ◽  
Haifei Shang ◽  
Silang Yang ◽  
Lujing Wu ◽  
...  

Currently, the laboratory diagnostic tests available for HIV-1 viral infection are mainly based on serological testing which relies on enzyme-linked immunosorbent assay (ELISA) for blood HIV antigen detection and reverse transcription polymerase chain reaction (RT-PCR) for HIV specific RNA sequence identification. However, these methods are expensive and time-consuming, and suffer from false positive and/or false negative results. Thus, there is an urgent need for developing a cost effective, rapid and accurate diagnostic method for HIV-1 infection. In order to reduce the barriers for effective diagnosis, a near-infrared spectroscopy (NIR) method was used to detect the HIV-1 virus in human serum, specifically, three absorption peaks with dose-dependent at 1582nm, 1810nm and 2363nm were found by multiple FBiPLSR test analysis for HIV-nano and HIV-EGFP, but not for MLV. Therefore, we recommend the use of 1582nm, 1810nm and 2363nm as the characteristic spectrum peak, for early screening and rapid diagnosis of serum HIV.


2005 ◽  
Vol 66 (2) ◽  
pp. 175-185 ◽  
Author(s):  
Rafael Font ◽  
Mercedes del Río-Celestino ◽  
Elena Cartea ◽  
Antonio de Haro-Bailón

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3145
Author(s):  
Moritz Salzmann ◽  
Yannick Blößl ◽  
Andrea Todorovic ◽  
Ralf Schledjewski

Near-infrared spectroscopy (NIR) was implemented in the resin transfer molding (RTM) process to inline monitor the degree of curing of a bio-based epoxy resin, which consists of epoxidized linseed oil (resin) and citric acid (hardener), respectively. A NIR micro-spectrometer was used for the development of robust calibration models using partial least squares (PLS) regression. Since the micro-spectrometer offers a smaller wavelength range compared with conventional NIR devices, and typical absorbance peaks are not directly involved in the captured data range, the results show new insights for the utilization of this technology. Different pre-treatments of the spectroscopic data have been tested, starting with different reference spectra, i.e., uncured resin and polytetrafluorethylene (PTFE), and followed by chemometrical algorithms. As a reference method for the degree of curing, direct current (DC) supported by differential scanning calorimetry (DSC) was used. The results show the potential of these cost-efficient and compact NIR micro-spectrometers for the intended inline monitoring purpose to gain relevant information feedback during the process.


2020 ◽  
pp. 096703352096379
Author(s):  
Qian-Fa Liu ◽  
Dan Li ◽  
Yao-De Zeng ◽  
Wei-Zhuang Huang

Gel time of prepreg is an important quality determinant in the manufacturing process of Copper Clad Laminate (CCL). Prepreg consists of a glass fiber reinforcement impregnated to a predetermined level with a resin matrix. In this work, near infrared spectroscopy associated with partial least squares (PLS) regression has been applied to analyse the gel time of prepreg samples in the manufacturing process. A total of 250 prepreg samples were randomly divided into a calibration set and a validation prediction set with a ratio of 4:1. The values of Root Mean Square Error of leave-one-out Cross-Validation (RMSECV) and the coefficient of determination (R2) of the calibration model was 2.95 s and 0.92 respectively, with eight PLS factors used. The results of the paired t-test revealed that there was no significant difference between the NIR method and the reference method. The analytical result showed that, NIR spectroscopy was a rapid, nondestructive, and accurate method for real-time prediction of prepreg quality in the CCL manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document